[1] Boyd, R. W. In Nonlinear Optics (Third Edition) (ed. Boyd, R. W. ) Ch. 4 (Academic, 2008).
[2] Wang, P., Liang, J. & Wang, L. V. Single-shot ultrafast imaging attaining 70 trillion frames per second. Nat. Commun. 11, 2091 (2020). doi: 10.1038/s41467-020-15745-4
[3] Yang, K. Y. et al. Inverse-designed non-reciprocal pulse router for chip-based LiDAR. Nat. Photon. 14, 369-374 (2020). doi: 10.1038/s41566-020-0606-0
[4] Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photon. 14, 285-298 (2020). doi: 10.1038/s41566-020-0609-x
[5] Feng, L., Guo, G. & Ren, X. Progress on integrated quantum photonic sources with silicon. Adv. Quantum Technol. 3, 1900058 (2020). doi: 10.1002/qute.201900058
[6] Paesani, S. et al. Near-ideal spontaneous photon sources in silicon quantum photonics. Nat. Commun. 11, 2505 (2020). doi: 10.1038/s41467-020-16187-8
[7] Ganichev, S. D. Intense terahertz excitation of semiconductors. Terahertz Sci. Technol. 1, 136-160 (2008).
[8] Mayer, A. & Keilmann, F. Far-infrared nonlinear optics. Ⅱ. Chi3 contributions from the dynamics of free carriers in semiconductors. Phys. Rev. B 33, 6962-6968 (1986). doi: 10.1103/PhysRevB.33.6962
[9] Markelz, A., Gwinn, E., Sherwin, M., Nguyen, C. & Kroemer, H. Giant third-order nonlinear susceptibilities for in-plane far-infrared excitation of single InAs quantum wells. Solid State Electron. 37, 1243-1245 (1994). doi: 10.1016/0038-1101(94)90399-9
[10] König-Otto, J. C. et al. Four-wave mixing in Landau-quantized graphene. Nano Lett. 17, 2184-2188 (2017). doi: 10.1021/acs.nanolett.6b04665
[11] Hafez, H. A. et al. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions. Nature 561, 507-511 (2018). doi: 10.1038/s41586-018-0508-1
[12] van Loon, M. A. W. et al. Giant multiphoton absorption for THz resonances in silicon hydrogenic donors. Nat. Photon. 12, 179-184 (2018). doi: 10.1038/s41566-018-0111-x
[13] Le, N. H., Lanskii, G. V., Aeppli, G. & Murdin, B. N. Giant non-linear susceptibility of hydrogenic donors in silicon and germanium. Light Sci. Appl. 8, 64 (2019). doi: 10.1038/s41377-019-0174-6
[14] Meng, F. et al. Intracavity third-harmonic generation in Si: B pumped by intense terahertz pulses. Phys. Rev. B 102, 1-9 (2020). doi: 10.1103/PhysRevB.102.075205
[15] Greenland, P. T. et al. Coherent control of Rydberg states in silicon. Nature 465, 1057-1061 (2010). doi: 10.1038/nature09112
[16] Pajot, B. Optical Absorption of Impurities and Defects in Semiconducting Crystals, Vol. 158 (Springer, 2010).
[17] Stavrias, N. et al. Competition between homogeneous and inhomogeneous broadening of orbital transitions in Si: Bi. Phys. Rev. B 96, 155204 (2017). doi: 10.1103/PhysRevB.96.155204
[18] Autere, A. et al. Nonlinear optics with 2D layered materials. Adv. Mater. 30, 1705963 (2018). doi: 10.1002/adma.201705963
[19] Sirtori, C., Capasso, F., Sivco, D. L. & Cho, A. Y. Giant, triply resonant, third-order nonlinear susceptibility Chi3. Phys. Rev. Lett. 68, 1010-1013 (1992). doi: 10.1103/PhysRevLett.68.1010
[20] Yao, X. & Belyanin, A. Nonlinear optics of graphene in a strong magnetic field. J. Phys. Condens. Matter 25, 054203 (2013). doi: 10.1088/0953-8984/25/5/054203
[21] Vinh, N. Q. et al. Silicon as a model ion trap: time domain measurements of donor Rydberg states. Proc. Natl Acad. Sci. USA 105, 10649-10653 (2008). doi: 10.1073/pnas.0802721105
[22] MacKenzie, H. A., Wherrett, B. S., Alattar, H. A. & Yuen, S. Y. Near-resonant non-degenerate four-wave mixing in InSb. J. Phys. B At. Mol. Phys. 17, 2141-2149 (1984). doi: 10.1088/0022-3700/17/10/017
[23] Sirtori, C., Barbieri, S. & Colombelli, R. Wave engineering with THz quantum cascade lasers. Nat. Photon. 7, 691-701 (2013). doi: 10.1038/nphoton.2013.208
[24] Madéo, J. et al. All-optical wavelength shifting in a semiconductor laser using resonant nonlinearities. Nat. Photon. 6, 519-524 (2012). doi: 10.1038/nphoton.2012.157
[25] Guo, J. et al. Doped GaSe crystals for laser frequency conversion. Light Sci. Appl. 4, e362 (2015). doi: 10.1038/lsa.2015.135
[26] Nagatsuma, T., Ducournau, G. & Renaud, C. C. Advances in terahertz communications accelerated by photonics. Nat. Photon. 10, 371-379 (2016). doi: 10.1038/nphoton.2016.65
[27] Koulouklidis, A. D. et al. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments. Nat. Commun. 11, 292 (2020). doi: 10.1038/s41467-019-14206-x
[28] Dessmann, N. Data sets for "highly efficient thz four-wave mixing in doped silicon". https://doi.org/10.5281/zenodo.4557683 (2021).
[29] Clauws, P., Broeckx, J., Rotsaert, E. & Vennik, J. Oscillator strengths of shallow impurity spectra in germanium and silicon. Phys. Rev. B 38, 12377 (1988). doi: 10.1103/PhysRevB.38.12377
[30] Jain, R. K. & Klein, M. B. Degenerate four-wave mixing near the band gap of semiconductors. Appl. Phys. Lett. 35, 454-456 (1979). doi: 10.1063/1.91158
[31] Wynne, J. J. Optical third-order mixing in GaAs, Ge, Si, and InAs. Phys. Rev. 178, 1295-1303 (1969). doi: 10.1103/PhysRev.178.1295
[32] Ganeev, R., Kulagin, I., Ryasnyansky, A., Tugushev, R. & Usmanov, T. Characterization of nonlinear optical parameters of KDP, LiNbO3 and BBO crystals. Opt. Commun. 229, 403-412 (2004). doi: 10.1016/j.optcom.2003.10.046
[33] Turner, M. D., Roh, W. B. & Schepler, K. L. Nonlinear optical properties of GaSb and GaInAsSb and their application for phase conjugation in degenerate four-wave mixing. J. Opt. Soc. Am. B 17, 790 (2000). doi: 10.1364/JOSAB.17.000790