[1] Gabor, D. A new microscopic principle. Nature 161, 777-778 (1948). doi: 10.1038/161777a0
[2] Gabor, D. Microscopy by reconstructed wave-fronts. Proceedings of the Physical Society A 197, 454-487 (1949).
[3] Stroke, G. W. An Introduction to Coherent Optics and Holography. 2nd edn. (New York: Academic Press, 1969).
[4] Hariharan, P. Optical Holography. (Cambridge: Cambridge University Press, 1984).
[5] Abramson, N. The Making and Evaluation of Holograms. (London: Academic Press, 1981).
[6] Leith, E. N. & Upatnieks, J. Wavefront reconstruction with diffused illumination and three-dimensional objects. Journal of the Optical Society of America 54, 1295-1301 (1964). doi: 10.1364/JOSA.54.001295
[7] Powell, R. L. & Stetson, K. A. Interferometric vibration analysis by wavefront reconstruction. Journal of the Optical Society of America 55, 1593-1598 (1965). doi: 10.1364/JOSA.55.001593
[8] Kock, W. E. Engineering Applications of Lasers and Holography. (New York: Plenum Press, 1975).
[9] Okoshi, T. Three-Dimensional Imaging Techniques. (New York: Academic Press, 1976).
[10] Vest, C. M. Holographic Interferometry. (New York: Wiley, 1979).
[11] Jones, R. & Wykes, C. Holographic and Speckle Interferometry: A Discussion of the Theory, Practice, and Application of the Techniques. 2nd edn. (Cambridge: Cambridge University Press, 1989).
[12] Haines, K. A. & Hildebrand, B. P. Surface-deformation measurement using the wavefront reconstruction technique. Applied Optics 5, 595-602 (1966). doi: 10.1364/AO.5.000595
[13] Stetson, K. A. Fringe interpretation for hologram interferometry of rigid-body motions and homogeneous deformations. Journal of the Optical Society of America 64, 1-10 (1974). doi: 10.1364/JOSA.64.000001
[14] Hecht, E. & Zajac, A. Optics. 2nd edn. (Boston: Addison-Wesley, 1987).
[15] Leith, E. N. & Upatnieks, J. Reconstructed wavefronts and communication theory. Journal of the Optical Society of America 52, 1123-1130 (1962). doi: 10.1364/JOSA.52.001123
[16] Asmus, J. F. et al. Holography in the conservation of statuary. Studies in Conservation 18, 49-63 (1973).
[17] Amadesi, S. et al. Holographic methods for painting diagnostics. Applied Optics 13, 2009-2013 (1974). doi: 10.1364/AO.13.002009
[18] Paoletti, D., Spagnolo, G. S. & D'Altorio, E. A. The state of art of holographic non destructive testing in work of art diagnostics. Revue de Physique Appliquée 24, 389-399 (1989). doi: 10.1051/rphysap:01989002403038900
[19] Amadesi, S., D'Altorio, A. & Paoletti, D. Single-two hologram interferometry: a combined method for dynamic test on painted wooden statues. Journal of Optics 14, 243-146 (1983). doi: 10.1088/0150-536X/14/5/003
[20] Amadesi, S., DoAltorio, A. & Paoletti, D. Sandwich holography for painting diagnostics. Applied Optics 21, 1889-1890 (1982). doi: 10.1364/AO.21.001889
[21] Amadesi, S., D’Altorio, A. & Paoletti, D. Real and nonreal time holographic nondestructive test (HNDT) for painting diagnostics. Proceedings of SPIE 0369, Max Born Centenary Conference. Edinburgh, UK: SPIE, 1983, 497-501.
[22] Boone, P. M. & Markov, V. B. Examination of museum objects by means of video holography. Studies in Conservation 40, 103-109 (1995). doi: 10.2307/1506509
[23] YN Denisyuk, On the reflection of optical properties of an object in a wave field of light scattered by it, - Doklady Akademii Nauk SSSR, en-academic.com (1962).
[24] Denisyuk, Y. N. Art holography in thick materials based on Lippmann photographic plates. Journal of Technical Physics (1978).
[25] Denisyuk, Y. N. The manifestation of the optical properties of an object in the wave field of the radiation it scatters. Doklady Akademii Nauk SSSR 144, 1275-1278 mathnet.ru (1962).
[26] Markov, V. B. Holography in museums. in Optical Technologies in the Humanities (eds Dirksen, D. & von Bally, G.) (Berlin, Heidelberg: Springer, 1997), 31-41. http://dx.doi.org/10.1007/978-3-642-60872-8_3.
[27] Von Bally, G. et al. Recording of color holograms on PFG-03Ts. Technical Physics Letters 21, 667-668 (1995).
[28] Bjelkhagen, H. I. & Vukicevic, D. Lippmann color holography in a single-layer silver-halide emulsion. Proceedings of SPIE 2333, Fifth International Symposium on Display Holography. Lake Forest, IL, United States: SPIE, 1995. http://dx.doi.org/10.1117/12.201881.
[29] Gülker, G. et al. Deformation mapping and surface inspection of historical monuments. Optics and Lasers in Engineering 24, 183-213 (1996). doi: 10.1016/0143-8166(95)00022-4
[30] Gülker, G., Hinsch, K. D. & Kraft, A. Deformation monitoring on ancient terracotta warriors by microscopic TV-Holography. Optics and Lasers in Engineering 36, 501-513 (2001). doi: 10.1016/S0143-8166(01)00075-6
[31] Trolinger, J. D. Civil and structural engineering measurements with interferometry, shearography, and holography. Optics and Lasers in Engineering 24, 87-88 (1996). doi: 10.1016/0143-8166(95)00007-0
[32] Schnars, U., Kreis, T. M. & Jüptner, W. P. O. Digital recording and numerical reconstruction of holograms: reduction of the spatial frequency spectrum. Optical Engineering 35, 977-982 (1996). doi: 10.1117/1.600706
[33] Wagner, C. et al. Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology. Applied Optics 38, 4812-4820 (1999). doi: 10.1364/AO.38.004812
[34] Osten, W. Optical microsystems metrology. Optics and Lasers in Engineering 36, 75-76 (2001). doi: 10.1016/S0143-8166(01)00051-3
[35] Osten, W., Kalms, M. K. & Jueptner, W. P. O. Some ways to improve the recognition of imperfections in large-scale components using shearography. Proceedings of SPIE 3745, Interferometry'99: Applications. Pultusk Castle, Poland: SPIE, 1999, 244-256.
[36] Osten, W., Jueptner, W. P. O. & Mieth, U. Knowledge-assisted evaluation of fringe patterns for automatic fault detection. Proceedings of SPIE 2004, Interferometry VI. San Diego, USA: SPIE, 1994, 256-268.
[37] Osten, W., Elandaloussi, F. & Mieth, U. The Bias Fringe Processor- A useful tool for the automatic processing of fringe patterns in optical metrology. Proceedings of the 3rd International Workshop in Optical Metrology, Series in Optical Metrology. Bremen: Akademie Verlag, 1997, 98-107.
[38] Tornari, V. et al. Laser-based systems for the structural diagnostic of artwork: an application to XVII- century Byzantine icons. Proceedings of SPIE 4402, Laser Techniques and Systems in Art Conservation. Munich, Germany: SPIE, 2001.
[39] Tornari, V., Pedrini, G. & Osten, W. Remote photonic metrology in the conservation of cultural heritage. Proceedings of SPIE 8790, Optics for Arts, Architecture, and Archaeology IV. Munich, Germany: SPIE, 2013. http://dx.doi.org/10.1117/12.2021338.
[40] Tornari, V., Osten, W. Shearography as part of a multi-functional sensor for the detection of signature features in movable cultural heritaged. Proceedings of SPIE 6618, O3A: Optics for Arts, Architecture, and Archaeology. Munich, Germany: SPIE, 2007. http://dx.doi.org/10.1117/12.727497.
[41] Tornari, V., Tsiranidou, E. & Bernikola, E. Interference fringe-patterns association to defect-types in artwork conservation: an experiment and research validation review. Applied Physics A 106, 397-410 (2012). doi: 10.1007/s00339-011-6695-3
[42] Bernikola, E., Nevin, A. & Tornari, V. Rapid initial dimensional changes in wooden panel paintings due to simulated climate-induced alterations monitored by digital coherent out-of-plane interferometry. Applied Physics A 95, 387-399 (2009). doi: 10.1007/s00339-009-5096-3
[43] Tornari, V. et al. Fully-non-contact masking-based holography inspection on dimensionally responsive artwork materials. Sensors 8, 8401-8422 (2008). doi: 10.3390/s8128401
[44] Tornari, V. Laser interference-based techniques and applications in structural inspection of works of art. Analytical and Bioanalytical Chemistry 387, 761-780 (2007). doi: 10.1007/s00216-006-0974-4
[45] Thizy, C. et al. Photorefractive holographic interferometry for movable artwork assessment. Proceedings of Photorefractive Effects, Photosensitivity, Fiber Gratings, Photonic Materials and More 2007. Squaw Creek, USA: Optical Society of America, 2007, MB49.
[46] Chaban, A., Deiana, R. & Tornari, V. Wall mosaics: a review of on-site non-invasive methods, application challenges and new frontiers for their study and preservation. Journal of Imaging 6, 108 (2020). doi: 10.3390/jimaging6100108
[47] Yan, K. T. et al. Deep learning-based wrapped phase denoising method for application in digital holographic speckle pattern interferometry. Applied Sciences 10, 4044 (2020). doi: 10.3390/app10114044
[48] Zhou, W. J. et al. Tip crack imaging on transparent materials by digital holographic microscopy. Journal of Imaging 5, 80 (2019). doi: 10.3390/jimaging5100080
[49] Tornari, V. et al. Impact of relative humidity on wood sample: a climate chamber experimental simulation monitored by digital holographic speckle pattern interferometry. Journal of Imaging 5, 65 (2019). doi: 10.3390/jimaging5070065
[50] Tornari, V. et al. Heat transfer effects on defect boundaries captured by digital holographic interferometry and infrared thermography workstation: an overview on experimental results. Experimental Techniques 44, 59-74 (2020). doi: 10.1007/s40799-019-00336-w
[51] Chaban, A. et al. A combined non-invasive approach to the study of a mosaic model: first laboratory experimental results. Journal of Imaging 5, 58 (2019). doi: 10.3390/jimaging5060058
[52] Tornari, V. On development of portable Digital Holographic Speckle Pattern Interferometry system for remote-access monitoring and documentation in art conservation. Strain 55, e12288 (2019). doi: 10.1111/str.12288
[53] Kosma, K. et al. Digital holographic interferometry for cultural heritage structural diagnostics: a coherent and a lowʜcoherence optical setʜup for the study of a marquetry sample. Strain 54, e12263 (2018). doi: 10.1111/str.12263
[54] Tornari, V. et al. Interference fringe patterns in documentation on works of art: application on structural diagnosis of a fresco painting. American Journal of Art and Design 2, 1-15 (2017).
[55] Tornari, V. et al. Complimentarity of digital holographic speckle pattern interferometry and simulated infrared thermography for Cultural Heritage structural diagnostic research. International Journal of Engineering Research & Science 2, 129-141 (2016).
[56] Zitek, P. et al. Diffusion-model-Based risk assessment of moisture originated wood deterioration in historic buildings. Building and Environment 94, 218-230 (2015). doi: 10.1016/j.buildenv.2015.08.004
[57] Tornari, V. et al. Preventive deformation measurements on cultural heritage materials based on non-contact surface response of model samples. Studies in Conservation 60, S143-S158 (2015). doi: 10.1179/0039363015Z.000000000219
[58] Tornari, V., Tsiranidou, E. & Bernikola, E. Crack-growth on canvas paintings during transport simulation monitored with digital holographic speckle interferometry. Advances in Research 2, 967-986 (2014). doi: 10.9734/AIR/2014/11388
[59] Tornari, V. Delocalized photomechanical effects of UV ns laser ablation on polymer substrates captured by optical holography workstation: an overview on experimental result. Advances in Optics 2014, 105482 (2014). doi: 10.1155/2014/105482
[60] Márton, Z. et al. Holographic testing of possible mechanical effects of laser cleaning on the structure of model fresco samples. NDT & E International 63, 53-59 (2014). doi: 10.1016/j.ndteint.2014.01.007
[61] Tornari, V. et al. Synchronized deformation monitoring in laser cleaning: an application for cultural heritage conservation. Universal Journal of Physics and Application 7, 149-159 (2013). doi: 10.13189/ujpa.2013.010215
[62] Tornari, V. et al. Micro-mapping of defect structural micro-morphology in the documentation of fresco wall paintings. International Journal of Heritage in the Digital Era 2, 1-23 (2013). doi: 10.1260/2047-4970.2.1.1
[63] Tornari, V. Spatial coordinates in interferometry fringes: a timeless artwork multipurpose documentation. Journal of Basic and Applied Physics 1, 39-48 (2012).
[64] Krzemień, L. et al. Combining digital speckle pattern interferometry with shearography in a new instrument to characterize surface delamination in museum artefacts. Journal of Cultural Heritage 16, 544-550 (2014). doi: 10.1016/j.culher.2014.10.006
[65] Accardo, G. et al. The use of speckle interferometry in the study of large works of art. The Journal of Photographic Science 33, 174-176 (1985). doi: 10.1080/00223638.1985.12035793
[66] Young, C. R. T. Quantitative measurement of in-plane strain of canvas paintings using ESPI. Proceeding of Institute of Physics Applied Optics and Optoelectronics Conference. Brighton: IOP, 1998, 79-84.
[67] Pfeifer, T. et al. Strain/stress measurements using electronic speckle pattern interferometry. Proceedings of SPIE 3520, Three-Dimensional Imaging, Optical Metrology, and Inspection IV. Boston, MA, United States: SPIE, 1998, 262-271.
[68] Wegner, R. & Ettemeyer, A. Miniaturization of speckle interferometry for rapid strain analysis. Proceedings of SPIE 3824, Optical Measurement Systems for Industrial Inspection. Munich, Germany: SPIE, 1999, 30-37.
[69] Young, C. Measurement of the biaxial properties of nineteenth century canvas primings using electronic speckle pattern interferometry. Optics and Lasers in Engineering 31, 163-170 (1999).
[70] Del Sette, F. et al. Automated displacement measurements on historical canvases. Heritage Science 5, 21 (2017). doi: 10.1186/s40494-017-0135-4
[71] Buchta, D. et al. Lock-in-shearography for the detection of transport-induced damages on artwork. Proceedings of SPIE 10331, Optics for Arts, Architecture, and Archaeology VI. Munich, Germany: SPIE, 2017, 103310G.
[72] Buchta, D. et al. Combination of FEM simulations and shearography for defect detection on artwork. Strain 54, e12269 (2018). doi: 10.1111/str.12269
[73] Zhao, Q. H. et al. Digital shearography for NDT: phase measurement technique and recent developments. Applied Sciences 8, 2662 (2018). doi: 10.3390/app8122662
[74] Bylund Melin, C. Wooden Objects in Historic Buildings: Effects of Dynamic Relative Humidity and Temperature. (Gothoburgensis: Göteborgs Universitet, 2017).
[75] Sirohi, R. S. Optical Methods of Measurement: Wholefield Techniques. 2nd edn. (Boca Raton: CRC Press, 2018).
[76] Anisimov, A. G., Serikova, M. G. & Groves, R. M. 3D shape shearography technique for surface strain measurement of free-form objects. Applied Optics 58, 498-508 (2019). doi: 10.1364/AO.58.000498
[77] Anaf, W. et al. Real-time wood behaviour: the use of strain gauges for preventive conservation applications. Sensors 20, 305 (2020). doi: 10.3390/s20010305
[78] Pagliarulo, V. et al. Full-field NDT methods for investigation of paintings on poplar. Proceedings of SPIE 11785, Multimodal Sensing and Artificial Intelligence: Technologies and Applications II. SPIE, 2021, 1178511.
[79] Tornari, V. & Andrianakis, M. Exemplary case studies on movable and immovable cultural heritage investigation using portable system based on digital holographic speckle pattern interferometry. Proceedings of SPIE 10827, Sixth International Conference on Optical and Photonic Engineering. Shanghai, China: SPIE, 2018, 108271X.
[80] Madruga, F. J. et al. Measuring the water content in wood using step-heating thermography and speckle patterns-preliminary results. Sensors 20, 316 (2020). doi: 10.3390/s20010316
[81] Chaban, A. et al. Comparison of induced thermal change to climate chamber simulated environmental change in mosaic model by digital holographic speckle pattern interferometry (DHSPI). Proceedings of the SPIE 11058, Optics for Arts, Architecture, and Archaeology VII. Munich, Germany, SPIE, 2019, 110580I.
[82] Kupczak, A. et al. Processing relative humidity data using discrete Fourier transform to control strain in art objects. Strain 55, e12311 (2019). doi: 10.1111/str.12311
[83] dePolo, G. et al. After the paint has dried: a review of testing techniques for studying the mechanical properties of artistso paint. Heritage Science 9, 68 (2021). doi: 10.1186/s40494-021-00529-w
[84] Daffara, C. et al. A simple method for artworks monitoring by simultaneous speckle interferometry (ESPI) and speckle photography. Proceedings of SPIE 11784, Optics for Arts, Architecture, and Archaeology VIII. SPIE, 2021, 117840I.
[85] Huet, C. Application of variational concepts to size effects in elastic heterogeneous bodies. Journal of the Mechanics and Physics of Solids 38, 813-841 (1990). doi: 10.1016/0022-5096(90)90041-2
[86] Sab, K. On the homogenization and the simulation of random materials. European Journal of Mechanics. A. Solids 11, 585-607 (1992).
[87] Omairey, S. L., Dunning, P. D. & Sriramula, S. Development of an ABAQUS plugin tool for periodic RVE homogenisation. Engineering with Computers 35, 567-577 (2019). doi: 10.1007/s00366-018-0616-4
[88] Mieth, U. Untersuchungen zum erscheinungsbild von materialfehlern in holografischen interferogrammen. PhD thesis, University of Bremen, Bremen, 1998.
[89] Sanei, S. H. R. & Fertig III, R. S. Uncorrelated volume element for stochastic modeling of microstructures based on local fiber volume fraction variation. Composites Science and Technology 117, 191-198 (2015). doi: 10.1016/j.compscitech.2015.06.010
[90] Spencer, A. J. M. Continuum Mechanics. (London: Longman, 1980), 83.
[91] Roberts, A. J. A One-Dimensional Introduction to Continuum Mechanics. (World Scientific, 1994).
[92] Tiennot, M., Iannuzzi, D. & Hermens, E. Evolution of the viscoelastic properties of painting stratigraphies: a moisture weathering and nanoindentation approach. Heritage Science 9, 77 (2021). doi: 10.1186/s40494-021-00552-x
[93] Wigner, E. P. Symmetries and Reflections. (Bloomington: Indiana University Press, 1967).
[94] Anderson, P. W. More is different: broken symmetry and the nature of the hierarchical structure of science. Science 177, 393-396 (1972). doi: 10.1126/science.177.4047.393
[95] Cucker, F. Manifold Mirrors: The Crossing Paths of the Arts and Mathematics. (Cambridge: Cambridge University Press, 2013), 77-78, 83, 89, 103.
[96] Gouyet, J. F. Physics and Fractal Structures. (Paris: Masson Springer, 1996).
[97] Wilczek, F. A Beautiful Question: Finding Nature’s Deep Design. (New York: Penguin Press, 2015).
[98] Noether, E. Invariante Variationsprobleme, Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen. (Mathematisch-Physikalische Klasse, 1918), 235-257.
[99] Seifi H. Topologu optimization and additive manufacturing of structural nodes of gridshell structures, PhD thesis, RMIT University, 2019
[100] Chaikin, P. M. & Lubensky, T. C. Principles of Condensed Matter Physics. (Cambridge: Cambridge University Press, 1995).
[101] Kim, Y. K., Shiyanovskii, S. V. & Lavrentovich, O. D. Morphogenesis of defects and tactoids during isotropicɃnematic phase transition in self-assembled lyotropic chromonic liquid crystals. Journal of Physics: Condensed Matter 25, 404202 (2013). doi: 10.1088/0953-8984/25/40/404202
[102] Warner, M. & Mostajeran, C. Nematic director fields and topographies of solid shells of revolution. Proceedings of the Royal Society A: Mathematical,Physical and Engineering Sciences 474, 20170566 (2018). doi: 10.1098/rspa.2017.0566