[1] Endo, A. et al. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl. Phys. Lett. 98, 083302 (2011). doi: 10.1063/1.3558906
[2] Uoyama, H. et al. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012). doi: 10.1038/nature11687
[3] Zhang, Q. S. et al. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nat. Photonics 8, 326–332 (2014). doi: 10.1038/nphoton.2014.12
[4] Liu, Y. C. et al. All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nat. Rev. Mater. 3, 18020 (2018). doi: 10.1038/natrevmats.2018.20
[5] Kim, J. U. et al. Nanosecond-time-scale delayed fluorescence molecule for deep-blue OLEDs with small efficiency rolloff. Nat. Commun. 11, 1765 (2020). doi: 10.1038/s41467-020-15558-5
[6] Etherington, M. K. et al. Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence. Nat. Commun. 7, 13680 (2016). doi: 10.1038/ncomms13680
[7] Liu, H. J. et al. High-performance non-doped OLEDs with Nearly 100% Exciton use and negligible efficiency roll-off. Angew. Chem. Int. Ed. 57, 9290–9294 (2018). doi: 10.1002/anie.201802060
[8] Lim, H. et al. Highly efficient deep-blue OLEDs using a TADF emitter with a narrow emission spectrum and high horizontal emitting dipole ratio. Adv. Mater. 32, 2004083 (2020). doi: 10.1002/adma.202004083
[9] Wang, H. et al. Bluish-green thermally activated delayed fluorescence material for blue-hazard free hybrid white organic light-emitting device with high color quality and low efficiency roll-off. Adv. Opt. Mater. 7, 1801718 (2019). doi: 10.1002/adom.201801718
[10] Gan, L. et al. Utilizing a spiro TADF moiety as a functional electron donor in TADF molecular design toward efficient "multichannel" reverse intersystem crossing. Adv. Funct. Mater. 29, 1808088 (2019). doi: 10.1002/adfm.201808088
[11] Sun, J. N. et al. Charge-transfer exciton manipulation based on hydrogen bond for efficient white thermally activated delayed fluorescence. Adv. Funct. Mater. 30, 1908568 (2020). doi: 10.1002/adfm.201908568
[12] Chen, C. J. et al. Intramolecular charge transfer controls switching between room temperature phosphorescence and thermally activated delayed fluorescence. Angew. Chem. 130, 16645–16649 (2018). doi: 10.1002/ange.201809945
[13] Shao, S. Y. et al. Blue thermally activated delayed fluorescence polymers with nonconjugated backbone and through-space charge transfer effect. J. Am. Chem. Soc. 139, 17739–17742 (2017). doi: 10.1021/jacs.7b10257
[14] Xue, J. et al. Highly efficient thermally activated delayed fluorescence via j-aggregates with strong intermolecular charge transfer. Adv. Mater. 31, 1808242 (2019). doi: 10.1002/adma.201808242
[15] Li, M. et al. Axially chiral TADF-active enantiomers designed for efficient blue circularly polarized electroluminescence. Angew. Chem. 132, 3528–3532 (2020). doi: 10.1002/ange.201914249
[16] Li, W. et al. Tri-spiral donor for high efficiency and versatile blue thermally activated delayed fluorescence materials. Angew. Chem. Int. Ed. 58, 11301–11305 (2019). doi: 10.1002/anie.201904272
[17] Jeon, S. O. et al. High-efficiency, long-lifetime deep-blue organic light-emitting diodes. Nat. Photonics 15, 208–215 (2021). doi: 10.1038/s41566-021-00763-5
[18] Chan, C. Y. et al. Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission. Nat. Photonics 15, 203–207 (2021). doi: 10.1038/s41566-020-00745-z
[19] Cui, L. S. et al. Fast spin-flip enables efficient and stable organic electroluminescence from charge-transfer states. Nat. Photonics 14, 636–642 (2020). doi: 10.1038/s41566-020-0668-z
[20] Hatakeyama, T. et al. Ultrapure blue thermally activated delayed fluorescence molecules: efficient HOMO–LUMO separation by the multiple resonance effect. Adv. Mater. 28, 2777–2781 (2016). doi: 10.1002/adma.201505491
[21] Ikeda, N. et al. Solution-processable pure green thermally activated delayed fluorescence emitter based on the multiple resonance effect. Adv. Mater. 32, 2004072 (2020). doi: 10.1002/adma.202004072
[22] Zhang, Y. W. et al. Multi-resonance induced thermally activated delayed fluorophores for narrowband green OLEDs. Angew. Chem. 131, 17068–17073 (2019). doi: 10.1002/ange.201911266
[23] Yang, M. L., Park, I. S. & Yasuda, T. Full-color, narrowband, and high-efficiency electroluminescence from boron and carbazole embedded polycyclic heteroaromatics. J. Am. Chem. Soc. 142, 19468–19472 (2020). doi: 10.1021/jacs.0c10081
[24] Im, Y. et al. Recent progress in high-efficiency blue-light-emitting materials for organic light-emitting diodes. Adv. Funct. Mater. 27, 1603007 (2017). doi: 10.1002/adfm.201603007
[25] Kondo, Y. et al. Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter. Nat. Photonics 13, 678–682 (2019). doi: 10.1038/s41566-019-0476-5
[26] Eizner, E. et al. Inverting singlet and triplet excited states using strong light-matter coupling. Sci. Adv. 5, eaax4482 (2019). doi: 10.1126/sciadv.aax4482
[27] Joo, W. J. et al. Metasurface-driven OLED displays beyond 10, 000 pixels per inch. Science 370, 459–463 (2020). doi: 10.1126/science.abc8530
[28] Wang, M. S. et al. Investigating underlying mechanism in spectral narrowing phenomenon induced by microcavity in organic light emitting diodes. Nat. Commun. 10, 1614 (2019). doi: 10.1038/s41467-019-09585-0
[29] Gutbrod, T. et al. Weak and strong coupling of photons and excitons in photonic dots. Phys. Rev. B 57, 9950–9956 (1998). doi: 10.1103/PhysRevB.57.9950
[30] Wu, T. L. et al. Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off. Nat. Photonics 12, 235–240 (2018). doi: 10.1038/s41566-018-0112-9
[31] Wong, M. Y. & Zysman-Colman, E. Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Adv. Mater. 29, 1605444 (2017). doi: 10.1002/adma.201605444
[32] Deppe, D. G. et al. Spontaneous emission from planar microstructures. J. Mod. Opt. 41, 325–344 (1994). doi: 10.1080/09500349414550361
[33] You, H. et al. Improved performances of organic light-emitting diodes with metal oxide as anode buffer. J. Appl. Phys. 101, 026105 (2007). doi: 10.1063/1.2430511
[34] Nguyen, D. T. et al. Effect of the thickness of the MoO3 layers on optical properties of MoO3/Ag/MoO3 multilayer structures. J. Appl. Phys. 112, 063505 (2012). doi: 10.1063/1.4751334
[35] Chen, B. et al. Enhanced performance of tris-(8-hydroxyquinoline) aluminum-based organic light-emitting devices with LiF/Mg: Ag/Ag cathode. Opt. Express 13, 26–31 (2005). doi: 10.1364/OPEX.13.000026
[36] Forrest, S. R., Bradley, D. D. C. & Thompson, M. E. Measuring the efficiency of organic light-emitting devices. Adv. Mater. 15, 1043–1048 (2003). doi: 10.1002/adma.200302151
[37] Hofmann, S. et al. Singlet exciton diffusion length in organic light-emitting diodes. Phys. Rev. B 85, 245209 (2012). doi: 10.1103/PhysRevB.85.245209
[38] Furno, M. et al. Efficiency and rate of spontaneous emission in organic electroluminescent devices. Phys. Rev. B 85, 115205 (2012). doi: 10.1103/PhysRevB.85.115205
[39] Neyts, K. A. Simulation of light emission from thin-film microcavities. J. Opt. Soc. Am. A 15, 962–971 (1998). doi: 10.1364/JOSAA.15.000962
[40] Yu, Z. W. et al. Carrier transport manipulation for efficiency enhancement in blue phosphorescent organic light-emitting devices with a 4, 4′-bis (N-carbazolyl)-2, 2′-biphenyl host. J. Mater. Chem. C 7, 9301–9307 (2019). doi: 10.1039/C8TC06265J
[41] Kim, K. H. et al. Highly efficient organic light-emitting diodes with phosphorescent emitters having high quantum yield and horizontal orientation of transition dipole moments. Adv. Mater. 26, 3844–3847 (2014). doi: 10.1002/adma.201305733
[42] Mayr, C., Schmidt, T. D. & Brütting, W. High-efficiency fluorescent organic light-emitting diodes enabled by triplet-triplet annihilation and horizontal emitter orientation. Appl. Phys. Lett. 105, 183304 (2014). doi: 10.1063/1.4901341
[43] Meschede, D. Radiating atoms in confined space: from spontaneous emission to micromasers. Phys. Rep. 211, 201–250 (1992). doi: 10.1016/0370-1573(92)90110-L
[44] Dutra, S. & Knight, P. L. Spontaneous emission in a planar Fabry-Pérot microcavity. Phys. Rev. A 53, 3587 (1996). doi: 10.1103/PhysRevA.53.3587
[45] Masui, K., Nakanotani, H. & Adachi, C. Analysis of exciton annihilation in high-efficiency sky-blue organic light-emitting diodes with thermally activated delayed fluorescence. Org. Electron. 14, 2721–2726 (2013). doi: 10.1016/j.orgel.2013.07.010
[46] Li, C. et al. Thermally activated delayed fluorescence sensitized phosphorescence: a strategy to break the trade-off between efficiency and efficiency roll-off. ACS Appl. Mater. Interfaces 7, 15154–15159 (2015). doi: 10.1021/acsami.5b04090
[47] Murawski, C., Leo, K. & Gather, M. C. Efficiency roll-off in organic light-emitting diodes. Adv. Mater. 25, 6801–6827 (2013). doi: 10.1002/adma.201301603