[1] |
Ghosh, K. K. et al. Miniaturized integration of a fluorescence microscope. Nat. Methods 8, 871–878 (2011). doi: 10.1038/nmeth.1694 |
[2] |
Liberti, W. A. Ⅲ et al. J. An open source, wireless capable miniature microscope system. J. Neural Eng. 14, 045001 (2017). doi: 10.1088/1741-2552/aa6806 |
[3] |
Jacob, A. D. et al. A compact head-mounted endoscope for in vivo calcium imaging in freely behaving mice. Curr. Protoc. Neurosci. 84, e51 (2018). doi: 10.1002/cpns.51 |
[4] |
De Groot, A. et al. NINscope, a versatile miniscope for multi-region circuit investigations. eLife 9, e49987 (2020). doi: 10.7554/eLife.49987 |
[5] |
UCLA. Miniscope. at https://miniscope.org. |
[6] |
Zong, W. J. et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat. Methods 14, 713–719 (2017). doi: 10.1038/nmeth.4305 |
[7] |
Helmchen, F. et al. A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals. Neuron 31, 903–912 (2001). doi: 10.1016/S0896-6273(01)00421-4 |
[8] |
Pnevmatikakis, E. A. & Giovannucci, A. NoRMCorre: an online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neurosci. Methods 291, 83–94 (2017). doi: 10.1016/j.jneumeth.2017.07.031 |
[9] |
Engelbrecht, C. J., Voigt, F. & Helmchen, F. Miniaturized selective plane illumination microscopy for high-contrast in vivo fluorescence imaging. Opt. Lett. 35, 1413–1415 (2010). doi: 10.1364/OL.35.001413 |
[10] |
Yanny, K. et al. Miniature 3D fluorescence microscope using random microlenses. Proceedings of Optics and the Brain 2019. Tucson, Arizona United States: Optical Society of America, 2019. |
[11] |
Liu, F. L. et al. Single-shot 3D fluorescence microscopy with Fourier DiffuserCam. Proceedings of Novel Techniques in Microscopy 2019. Tucson, Arizona United States: Optical Society of America, 2019. |
[12] |
Antipa, N. et al. DiffuserCam: lensless single-exposure 3D imaging. Optica 5, 1–9 (2018). doi: 10.1364/OPTICA.5.000001 |
[13] |
Kuo, G. et al. On-chip fluorescence microscopy with a random microlens diffuser. Opt. Express 28, 8384–8399 (2020). doi: 10.1364/OE.382055 |
[14] |
Adams, J. K. et al. Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope. Sci. Adv. 3, e1701548 (2017). |
[15] |
Asif, M. S. et al. FlatCam: replacing lenses with masks and computation. Proceedings of 2015 IEEE International Conference on Computer Vision Workshop (Santiago, Chile: IEEE, 2015). |
[16] |
Levoy, M. et al. Light field microscopy. ACM Trans. Graph. 25, 924–934 (2006). doi: 10.1145/1141911.1141976 |
[17] |
Broxton, M. et al. Wave optics theory and 3-D deconvolution for the light field microscope. Opt. Express 21, 25418–25439 (2013). doi: 10.1364/OE.21.025418 |
[18] |
Shin, J. et al. A minimally invasive lens-free computational microendoscope. Sci. Adv. 5, eaaw5595 (2019). |
[19] |
Skocek, O. et al. High-speed volumetric imaging of neuronal activity in freely moving rodents. Nat. Methods 15, 429–432 (2018). doi: 10.1038/s41592-018-0008-0 |
[20] |
Nöbauer, T. et al. Video rate volumetric Ca2+ imaging across cortex using seeded iterative demixing (SID) microscopy. Nat. Methods 14, 811–818 (2017). doi: 10.1038/nmeth.4341 |
[21] |
Llavador, A. et al. Resolution improvements in integral microscopy with Fourier plane recording. Opt. Express 24, 20792–20798 (2016). doi: 10.1364/OE.24.020792 |
[22] |
Scrofani, G. et al. FIMic: design for ultimate 3D-integral microscopy of in-vivo biological samples. Biomed. Opt. Express 9, 335–346 (2018). doi: 10.1364/BOE.9.000335 |
[23] |
Guo, C. L. et al. Fourier light-field microscopy. Opt. Express 27, 25573–25594 (2019). doi: 10.1364/OE.27.025573 |
[24] |
Candès, E. J. & Wakin, M. B. An introduction to compressive sampling. IEEE Signal Proc. Mag. 25, 21–30 (2008). doi: 10.1109/MSP.2007.914731 |
[25] |
Candès, E. J. & Fernandez-Granda, C. Towards a mathematical theory of super-resolution. Commun. Pure Appl. Math. 67, 906–956 (2014). doi: 10.1002/cpa.21455 |
[26] |
Pavani, S. R. P. & Piestun, R. Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system. Opt. Express 16, 22048–22057 (2008). doi: 10.1364/OE.16.022048 |
[27] |
Beck, A. & Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2, 183–202 (2009). doi: 10.1137/080716542 |
[28] |
Antipa, N. et al. Video from stills: lensless imaging with rolling shutter. Proceedings of 2019 IEEE International Conference on Computational Photography (Tokyo, Japan: IEEE, 2019). |
[29] |
Katz, O. et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics 8, 784–790 (2014). doi: 10.1038/nphoton.2014.189 |
[30] |
Kuo, G. et al. DiffuserCam: diffuser-based lensless cameras. Proceedings of Computational Optical Sensing and Imaging. United States: Optical Society of America (San Francisco, CA, 2017). |
[31] |
Flicker, R. C. & Rigaut, F. J. Anisoplanatic deconvolution of adaptive optics images. J. Opt. Soc. Am. A 22, 504–513 (2005). doi: 10.1364/JOSAA.22.000504 |
[32] |
Kamilov, U. S. A parallel proximal algorithm for anisotropic total variation minimization. IEEE Trans. Image Process. 26, 539–548 (2017). doi: 10.1109/TIP.2016.2629449 |
[33] |
Cossairt, O., Gupta, M. & Nayar, S. K. When does computational imaging improve performance? IEEE Trans. Image Process. 22, 447–458 (2013). doi: 10.1109/TIP.2012.2216538 |
[34] |
Dai, Y. C. et al. Smooth approximation of L∞-norm for multi-view geometry. 2009 Digital Image Computing: Techniques and Applications. (pp. 339–346, Melbourne, VIC, 2009). |
[35] |
Thiele, S. et al. 3D-printed eagle eye: compound microlens system for foveated imaging. Sci. Adv. 3, e1602655 (2017). |
[36] |
Dehaeck, S., Scheid, B. & Lambert, P. Adaptive stitching for meso-scale printing with two-photon lithography. Addit. Manuf. 21, 589–597 (2018). |
[37] |
Sam Dehaeck. TipSlicer. at https://github.com/SamDehaeck/TipSlicer. |