[1] Marrucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006). doi: 10.1103/PhysRevLett.96.163905
[2] Granata, M. et al. Higher-order laguerre-gauss mode generation and interferometry for gravitational wave detectors. Phys. Rev. Lett. 105, 231102 (2010). doi: 10.1103/PhysRevLett.105.231102
[3] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333-337 (2011). doi: 10.1126/science.1210713
[4] Cai, X. L. et al. Integrated compact optical vortex beam emitters. Science 338, 363-366 (2012). doi: 10.1126/science.1226528
[5] Guo, Y. H. et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photon. 3, 2022-2029 (2016). doi: 10.1021/acsphotonics.6b00564
[6] Devlin, R. C. et al. Arbitrary spin-to-orbital angular momentum conversion of light. Science 358, 896-901 (2017). doi: 10.1126/science.aao5392
[7] Andersen, M. F. et al. Quantized rotation of atoms from photons with orbital angular momentum. Phys. Rev. Lett. 97, 170406 (2006). doi: 10.1103/PhysRevLett.97.170406
[8] Padgett, M. & Bowman, R. Tweezers with a twist. Nat. Photon. 5, 343-348 (2011). doi: 10.1038/nphoton.2011.81
[9] Lavery, M. P. J. et al. Detection of a spinning object using light's orbital angular momentum. Science 341, 537-540 (2013). doi: 10.1126/science.1239936
[10] Fu, S. Y. et al. Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions. Opt. Express 25, 20098-20108 (2017). doi: 10.1364/OE.25.020098
[11] Paterson, C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys. Rev. Lett. 94, 153901 (2005). doi: 10.1103/PhysRevLett.94.153901
[12] Marino, A. M. et al. Delocalized correlations in twin light beams with orbital angular momentum. Phys. Rev. Lett. 101, 093602 (2008). doi: 10.1103/PhysRevLett.101.093602
[13] Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488-496 (2012). doi: 10.1038/nphoton.2012.138
[14] Tamburini, F. et al. Encoding many channels on the same frequency through radio vorticity: first experimental test. New J. Phys. 14, 033001 (2012). doi: 10.1088/1367-2630/14/3/033001
[15] Bozinovic, N. et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545-1548 (2013). doi: 10.1126/science.1237861
[16] Willner, A. E. et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photon. 7, 66-106 (2015). doi: 10.1364/AOP.7.000066
[17] Alexandrescu, A., Cojoc, D. & Di Fabrizio, E. Mechanism of angular momentum exchange between molecules and Laguerre-Gaussian beams. Phys. Rev. Lett. 96, 243001 (2006). doi: 10.1103/PhysRevLett.96.243001
[18] Wu, T., Wang, R. Y. & Zhang, X. D. Plasmon-induced strong interaction between chiral molecules and orbital angular momentum of light. Sci. Rep. 5, 18003 (2015). doi: 10.1038/srep18003
[19] Brullot, W. et al. Resolving enantiomers using the optical angular momentum of twisted light. Sci. Adv. 2, e1501349 (2016). doi: 10.1126/sciadv.1501349
[20] Lee, J. et al. Photopolymerization with light fields possessing orbital angular momentum: generation of helical microfibers. ACS Photon. 5, 4156-4163 (2018). doi: 10.1021/acsphotonics.8b00959
[21] Patterson, D., Schnell, M. & Doyle, J. M. Enantiomer-specific detection of chiral molecules via microwave spectroscopy. Nature 497, 475-477 (2013). doi: 10.1038/nature12150
[22] Su, T. H. et al. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices. Opt. Express 20, 9396-9402 (2012). doi: 10.1364/OE.20.009396
[23] Strain, M. J. et al. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters. Nat. Commun. 5, 4856 (2014). doi: 10.1038/ncomms5856
[24] Garoli, D. et al. Optical vortex beam generator at nanoscale level. Sci. Rep. 6, 29547 (2016). doi: 10.1038/srep29547
[25] Ohno, T. & Miyanishi, S. Study of surface plasmon chirality induced by Archimedes' spiral grooves. Opt. Express 14, 6285-6290 (2006). doi: 10.1364/OE.14.006285
[26] Huang, L. L. et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 12, 5750-5755 (2012). doi: 10.1021/nl303031j
[27] Gorodetski, Y. et al. Generating far-field orbital angular momenta from near-field optical chirality. Phys. Rev. Lett. 110, 203906 (2013). doi: 10.1103/PhysRevLett.110.203906
[28] Pu, M. B. et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1, e1500396 (2015). doi: 10.1126/sciadv.1500396
[29] Maguid, E. et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 352, 1202-1206 (2016). doi: 10.1126/science.aaf3417
[30] Hentschel, M. et al. Chiral plasmonics. Sci. Adv. 3, e1602735 (2017). doi: 10.1126/sciadv.1602735
[31] Ostrovsky, E. et al. Nanoscale control over optical singularities. Optica 5, 283-288 (2018). doi: 10.1364/OPTICA.5.000283
[32] Kim, H. et al. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens. Nano Lett. 10, 529-536 (2010). doi: 10.1021/nl903380j
[33] Liu, A. P. et al. Detecting orbital angular momentum through division-of-amplitude interference with a circular plasmonic lens. Sci. Rep. 3, 2402 (2013). doi: 10.1038/srep02402
[34] Carli, M. et al. Sub-wavelength confinement of the orbital angular momentum of light probed by plasmonic nanorods resonances. Opt. Express 22, 26302-26311 (2014). doi: 10.1364/OE.22.026302
[35] Chen, C. F. et al. Creating optical near-field orbital angular momentum in a gold metasurface. Nano Lett. 15, 2746-2750 (2015). doi: 10.1021/acs.nanolett.5b00601
[36] Spektor, G. et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science 355, 1187-1191 (2017). doi: 10.1126/science.aaj1699
[37] Machado, F. et al. Shaping polaritons to reshape selection rules. Proceedings of 2017 Conference on Lasers and Electro-Optics (CLEO). (San Jose, IEEE, 2017).
[38] Coenen, T. et al. Directional emission from plasmonic Yagi-uda antennas probed by angle-resolved cathodoluminescence spectroscopy. Nano Lett. 11, 3779-3784 (2011). doi: 10.1021/nl201839g
[39] Losquin, A. et al. Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements. Nano Lett. 15, 1229-1237 (2015). doi: 10.1021/nl5043775
[40] Atre, A. C. et al. Nanoscale optical tomography with cathodoluminescence spectroscopy. Nat. Nanotechnol. 10, 429-436 (2015). doi: 10.1038/nnano.2015.39
[41] Hachtel, J. A. et al. Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope. Nanotechnology 27, 155202 (2016). doi: 10.1088/0957-4484/27/15/155202
[42] Lourenço-Martins, H. et al. Probing plasmon-NV0 coupling at the nanometer scale with photons and fast electrons. ACS Photon. 5, 324-328 (2018). doi: 10.1021/acsphotonics.7b01093
[43] Feldman, M. A. et al. Colossal photon bunching in quasiparticle-mediated nanodiamond cathodoluminescence. Phys. Rev. B 97, 081404 (2018). doi: 10.1103/PhysRevB.97.081404
[44] Hachtel, J. A. et al. Polarization- and wavelength-resolved near-field imaging of complex plasmonic modes in Archimedean nanospirals. Opt. Lett. 43, 927-930 (2018). doi: 10.1364/OL.43.000927
[45] Barnard, E. S. et al. Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence. Nano Lett. 11, 4265-4269 (2011). doi: 10.1021/nl202256k
[46] García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209-275 (2010). doi: 10.1103/RevModPhys.82.209
[47] García de Abajo, F. J. & Kociak, M. Probing the photonic local density of states with electron energy loss spectroscopy. Phys. Rev. Lett. 100, 106804 (2008). doi: 10.1103/PhysRevLett.100.106804
[48] Kuttge, M. et al. Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence. Phys. Rev. B 79, 113405 (2009).
[49] Kubo, A., Pontius, N. & Petek, H. Femtosecond microscopy of surface Plasmon Polariton wave packet evolution at the silver/vacuum interface. Nano Lett. 7, 470-475 (2007). doi: 10.1021/nl0627846
[50] Wagner, M. et al. Ultrafast dynamics of surface plasmons in InAs by time-resolved infrared nanospectroscopy. Nano Lett. 14, 4529-4534 (2014). doi: 10.1021/nl501558t
[51] Midgley, P. A. & Dunin-Borkowski, R. E. Electron tomography and holography in materials science. Nat. Mater. 8, 271-280 (2009). doi: 10.1038/nmat2406
[52] Guzzinati, G. et al. Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams. Nat. Commun. 8, 14999 (2017). doi: 10.1038/ncomms14999
[53] Verbeeck, J. et al. Demonstration of a 2×2 programmable phase plate for electrons. Ultramicroscopy 190, 58-65 (2018). doi: 10.1016/j.ultramic.2018.03.017
[54] Fang, Y. R. et al. Hot electron generation and cathodoluminescence nanoscopy of chiral split ring resonators. Nano Lett. 16, 5183-5190 (2016). doi: 10.1021/acs.nanolett.6b02154
[55] Li, G. H. et al. Holographic free-electron light source. Nat. Commun. 7, 13705 (2016). doi: 10.1038/ncomms13705
[56] Palik, E. D. Handbook of optical constants of solids. (San Diego: Academic Press, 1998).
[57] Iakoubovskii, K. et al. Mean free path of inelastic electron scattering in elemental solids and oxides using transmission electron microscopy: atomic number dependent oscillatory behavior. Phys. Rev. B 77, 104102 (2008). doi: 10.1103/PhysRevB.77.104102