[1] |
Marrucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006). doi: 10.1103/PhysRevLett.96.163905 |
[2] |
Granata, M. et al. Higher-order laguerre-gauss mode generation and interferometry for gravitational wave detectors. Phys. Rev. Lett. 105, 231102 (2010). doi: 10.1103/PhysRevLett.105.231102 |
[3] |
Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333-337 (2011). doi: 10.1126/science.1210713 |
[4] |
Cai, X. L. et al. Integrated compact optical vortex beam emitters. Science 338, 363-366 (2012). doi: 10.1126/science.1226528 |
[5] |
Guo, Y. H. et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photon. 3, 2022-2029 (2016). doi: 10.1021/acsphotonics.6b00564 |
[6] |
Devlin, R. C. et al. Arbitrary spin-to-orbital angular momentum conversion of light. Science 358, 896-901 (2017). doi: 10.1126/science.aao5392 |
[7] |
Andersen, M. F. et al. Quantized rotation of atoms from photons with orbital angular momentum. Phys. Rev. Lett. 97, 170406 (2006). doi: 10.1103/PhysRevLett.97.170406 |
[8] |
Padgett, M. & Bowman, R. Tweezers with a twist. Nat. Photon. 5, 343-348 (2011). doi: 10.1038/nphoton.2011.81 |
[9] |
Lavery, M. P. J. et al. Detection of a spinning object using light's orbital angular momentum. Science 341, 537-540 (2013). doi: 10.1126/science.1239936 |
[10] |
Fu, S. Y. et al. Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions. Opt. Express 25, 20098-20108 (2017). doi: 10.1364/OE.25.020098 |
[11] |
Paterson, C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys. Rev. Lett. 94, 153901 (2005). doi: 10.1103/PhysRevLett.94.153901 |
[12] |
Marino, A. M. et al. Delocalized correlations in twin light beams with orbital angular momentum. Phys. Rev. Lett. 101, 093602 (2008). doi: 10.1103/PhysRevLett.101.093602 |
[13] |
Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488-496 (2012). doi: 10.1038/nphoton.2012.138 |
[14] |
Tamburini, F. et al. Encoding many channels on the same frequency through radio vorticity: first experimental test. New J. Phys. 14, 033001 (2012). doi: 10.1088/1367-2630/14/3/033001 |
[15] |
Bozinovic, N. et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545-1548 (2013). doi: 10.1126/science.1237861 |
[16] |
Willner, A. E. et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photon. 7, 66-106 (2015). doi: 10.1364/AOP.7.000066 |
[17] |
Alexandrescu, A., Cojoc, D. & Di Fabrizio, E. Mechanism of angular momentum exchange between molecules and Laguerre-Gaussian beams. Phys. Rev. Lett. 96, 243001 (2006). doi: 10.1103/PhysRevLett.96.243001 |
[18] |
Wu, T., Wang, R. Y. & Zhang, X. D. Plasmon-induced strong interaction between chiral molecules and orbital angular momentum of light. Sci. Rep. 5, 18003 (2015). doi: 10.1038/srep18003 |
[19] |
Brullot, W. et al. Resolving enantiomers using the optical angular momentum of twisted light. Sci. Adv. 2, e1501349 (2016). doi: 10.1126/sciadv.1501349 |
[20] |
Lee, J. et al. Photopolymerization with light fields possessing orbital angular momentum: generation of helical microfibers. ACS Photon. 5, 4156-4163 (2018). doi: 10.1021/acsphotonics.8b00959 |
[21] |
Patterson, D., Schnell, M. & Doyle, J. M. Enantiomer-specific detection of chiral molecules via microwave spectroscopy. Nature 497, 475-477 (2013). doi: 10.1038/nature12150 |
[22] |
Su, T. H. et al. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices. Opt. Express 20, 9396-9402 (2012). doi: 10.1364/OE.20.009396 |
[23] |
Strain, M. J. et al. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters. Nat. Commun. 5, 4856 (2014). doi: 10.1038/ncomms5856 |
[24] |
Garoli, D. et al. Optical vortex beam generator at nanoscale level. Sci. Rep. 6, 29547 (2016). doi: 10.1038/srep29547 |
[25] |
Ohno, T. & Miyanishi, S. Study of surface plasmon chirality induced by Archimedes' spiral grooves. Opt. Express 14, 6285-6290 (2006). doi: 10.1364/OE.14.006285 |
[26] |
Huang, L. L. et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 12, 5750-5755 (2012). doi: 10.1021/nl303031j |
[27] |
Gorodetski, Y. et al. Generating far-field orbital angular momenta from near-field optical chirality. Phys. Rev. Lett. 110, 203906 (2013). doi: 10.1103/PhysRevLett.110.203906 |
[28] |
Pu, M. B. et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1, e1500396 (2015). doi: 10.1126/sciadv.1500396 |
[29] |
Maguid, E. et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 352, 1202-1206 (2016). doi: 10.1126/science.aaf3417 |
[30] |
Hentschel, M. et al. Chiral plasmonics. Sci. Adv. 3, e1602735 (2017). doi: 10.1126/sciadv.1602735 |
[31] |
Ostrovsky, E. et al. Nanoscale control over optical singularities. Optica 5, 283-288 (2018). doi: 10.1364/OPTICA.5.000283 |
[32] |
Kim, H. et al. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens. Nano Lett. 10, 529-536 (2010). doi: 10.1021/nl903380j |
[33] |
Liu, A. P. et al. Detecting orbital angular momentum through division-of-amplitude interference with a circular plasmonic lens. Sci. Rep. 3, 2402 (2013). doi: 10.1038/srep02402 |
[34] |
Carli, M. et al. Sub-wavelength confinement of the orbital angular momentum of light probed by plasmonic nanorods resonances. Opt. Express 22, 26302-26311 (2014). doi: 10.1364/OE.22.026302 |
[35] |
Chen, C. F. et al. Creating optical near-field orbital angular momentum in a gold metasurface. Nano Lett. 15, 2746-2750 (2015). doi: 10.1021/acs.nanolett.5b00601 |
[36] |
Spektor, G. et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science 355, 1187-1191 (2017). doi: 10.1126/science.aaj1699 |
[37] |
Machado, F. et al. Shaping polaritons to reshape selection rules. Proceedings of 2017 Conference on Lasers and Electro-Optics (CLEO). (San Jose, IEEE, 2017). |
[38] |
Coenen, T. et al. Directional emission from plasmonic Yagi-uda antennas probed by angle-resolved cathodoluminescence spectroscopy. Nano Lett. 11, 3779-3784 (2011). doi: 10.1021/nl201839g |
[39] |
Losquin, A. et al. Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements. Nano Lett. 15, 1229-1237 (2015). doi: 10.1021/nl5043775 |
[40] |
Atre, A. C. et al. Nanoscale optical tomography with cathodoluminescence spectroscopy. Nat. Nanotechnol. 10, 429-436 (2015). doi: 10.1038/nnano.2015.39 |
[41] |
Hachtel, J. A. et al. Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope. Nanotechnology 27, 155202 (2016). doi: 10.1088/0957-4484/27/15/155202 |
[42] |
Lourenço-Martins, H. et al. Probing plasmon-NV0 coupling at the nanometer scale with photons and fast electrons. ACS Photon. 5, 324-328 (2018). doi: 10.1021/acsphotonics.7b01093 |
[43] |
Feldman, M. A. et al. Colossal photon bunching in quasiparticle-mediated nanodiamond cathodoluminescence. Phys. Rev. B 97, 081404 (2018). doi: 10.1103/PhysRevB.97.081404 |
[44] |
Hachtel, J. A. et al. Polarization- and wavelength-resolved near-field imaging of complex plasmonic modes in Archimedean nanospirals. Opt. Lett. 43, 927-930 (2018). doi: 10.1364/OL.43.000927 |
[45] |
Barnard, E. S. et al. Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence. Nano Lett. 11, 4265-4269 (2011). doi: 10.1021/nl202256k |
[46] |
García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209-275 (2010). doi: 10.1103/RevModPhys.82.209 |
[47] |
García de Abajo, F. J. & Kociak, M. Probing the photonic local density of states with electron energy loss spectroscopy. Phys. Rev. Lett. 100, 106804 (2008). doi: 10.1103/PhysRevLett.100.106804 |
[48] |
Kuttge, M. et al. Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence. Phys. Rev. B 79, 113405 (2009). |
[49] |
Kubo, A., Pontius, N. & Petek, H. Femtosecond microscopy of surface Plasmon Polariton wave packet evolution at the silver/vacuum interface. Nano Lett. 7, 470-475 (2007). doi: 10.1021/nl0627846 |
[50] |
Wagner, M. et al. Ultrafast dynamics of surface plasmons in InAs by time-resolved infrared nanospectroscopy. Nano Lett. 14, 4529-4534 (2014). doi: 10.1021/nl501558t |
[51] |
Midgley, P. A. & Dunin-Borkowski, R. E. Electron tomography and holography in materials science. Nat. Mater. 8, 271-280 (2009). doi: 10.1038/nmat2406 |
[52] |
Guzzinati, G. et al. Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams. Nat. Commun. 8, 14999 (2017). doi: 10.1038/ncomms14999 |
[53] |
Verbeeck, J. et al. Demonstration of a 2×2 programmable phase plate for electrons. Ultramicroscopy 190, 58-65 (2018). doi: 10.1016/j.ultramic.2018.03.017 |
[54] |
Fang, Y. R. et al. Hot electron generation and cathodoluminescence nanoscopy of chiral split ring resonators. Nano Lett. 16, 5183-5190 (2016). doi: 10.1021/acs.nanolett.6b02154 |
[55] |
Li, G. H. et al. Holographic free-electron light source. Nat. Commun. 7, 13705 (2016). doi: 10.1038/ncomms13705 |
[56] |
Palik, E. D. Handbook of optical constants of solids. (San Diego: Academic Press, 1998). |
[57] |
Iakoubovskii, K. et al. Mean free path of inelastic electron scattering in elemental solids and oxides using transmission electron microscopy: atomic number dependent oscillatory behavior. Phys. Rev. B 77, 104102 (2008). doi: 10.1103/PhysRevB.77.104102 |