[1] Siemion, A. Terahertz diffractive optics—smart control over radiation. Journal of Infrared,Millimeter,and Terahertz Waves 40, 477-499 (2019). doi: 10.1007/s10762-019-00581-5
[2] Zhu, L. et al. Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications. Proceedings of Optical Fiber Communication Conference. San Francisco, California, United States: Optica Publishing Group, 2014, M3K.7.
[3] Kulya, M. S. et al. Propagation dynamics of ultrabroadband terahertz beams with orbital angular momentum for wireless data transfer. Proceedings of SPIE, 11307. Broadband Access Communication Technologies XIV. San Francisco, California, United States: SPIE, 2020, 113070J.
[4] Petrov, N. V. et al. On the features of the interference of a set of broadband uniformly topologically charged beams. Proceedings of SPIE, 11499. Terahertz Emitters, Receivers, and Applications XI. Online Only: SPIE, 2020, 114990I.
[5] Minkevičius, L. et al. Bessel terahertz imaging with enhanced contrast realized by silicon multi-phase diffractive optics. Optics Express 27, 36358-36367 (2019). doi: 10.1364/OE.27.036358
[6] Kulya, M. et al. Spatio-temporal and spatiospectral metrology of terahertz broadband uniformly topologically charged vortex beams. Applied Optics 58, A90-A100 (2019). doi: 10.1364/AO.58.000A90
[7] Sirenko, A. A. et al. Terahertz vortex beam as a spectroscopic probe of magnetic excitations. Physical Review Letters 122, 237401 (2019). doi: 10.1103/PhysRevLett.122.237401
[8] Nanni, E. A. et al. Terahertz-driven linear electron acceleration. Nature Communications 6, 8486 (2015). doi: 10.1038/ncomms9486
[9] Hibberd, M. T. et al. Acceleration of relativistic beams using laser-generated terahertz pulses. Nature Photonics 14, 755-759 (2020). doi: 10.1038/s41566-020-0674-1
[10] Miyamoto, K. et al. Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate. Applied Physics Letters 104, 261104 (2014). doi: 10.1063/1.4886407
[11] Beijersbergen, M. et al. Helical-wavefront laser beams produced with a spiral phaseplate. Optics Communications 112, 321-327 (1994). doi: 10.1016/0030-4018(94)90638-6
[12] Petrov, N. V. et al. Design of broadband terahertz vector and vortex beams: I. Review of materials and components. Light: Advanced Manufacturing Manuscript 3, 43 (2022).
[13] Suzuki, M. et al. Analysis of the Pancharatnam-Berry phase of vector vortex states using the Hamiltonian based on the Maxwell-Schrödinger equation. Physical Review A 94, 043851 (2016). doi: 10.1103/PhysRevA.94.043851
[14] Cardano, F. et al. Polarization pattern of vector vortex beams generated by q-plates with different topological charges. Applied Optics 51, C1-C6 (2012). doi: 10.1364/AO.51.0000C1
[15] Bekshaev, A., Bliokh, K. Y. & Soskin, M. Internal flows and energy circulation in light beams. Journal of Optics 13, 053001 (2011). doi: 10.1088/2040-8978/13/5/053001
[16] Im ai, R. et al. Generation of broadband terahertz vortex beams. Optics Letters 39, 3714-3717 (2014). doi: 10.1364/OL.39.003714
[17] Lin, Q. et al. Generation of terahertz vortex pulses without any need of manipulation in the terahertz region. Optics Letters 44, 887-890 (2019). doi: 10.1364/OL.44.000887
[18] Bespalov, V. G. & Gorodetskĭ, A. A. Modeling of referenceless holographic recording and reconstruction of images by means of pulsed terahertz radiation. Journal of Optical Technology 74, 745-749 (2007). doi: 10.1364/JOT.74.000745
[19] Petrov, N. V., Gorodetsky, A. A. & Bespalov, V. G. Holography and phase retrieval in terahertz imaging. Proceedings of SPIE, 8846. Terahertz Emitters, Receivers, and Applications IV. San-Diego, California, United States: SPIE, 2013, 88460S.
[20] Petrov, N. V. et al. Application of Terahertz Pulse Time-Domain Holography for Phase Imaging. IEEE Transactions on Terahertz Science and Technology 6, 464-472 (2016). doi: 10.1109/TTHZ.2016.2530938
[21] Wang, X. et al. Coaxial waveguide mode reconstruction and analysis with THz digital holography. Optics Express 20, 7706-15 (2012). doi: 10.1364/OE.20.007706
[22] Kulya, M. S. et al. On terahertz pulsed broadband Gauss-Bessel beam free-space propagation. Scientific Reports 8, 1390 (2018). doi: 10.1038/s41598-018-19830-z
[23] Liu, X. et al. Spectral Fresnel filter for pulsed broadband terahertz radiation. AIP Advances 10, 125104 (2020). doi: 10.1063/5.0024456
[24] Balbekin, N. S. et al. Nondestructive monitoring of aircraft composites using terahertz radiation. Proceedings of SPIE, 9448. Saratov Fall Meeting 2014: Optical Technologies in Biophysics and Medicine XVI; Laser Physics and Photonics XVI; and Computational Biophysics. Saratov, Russia: SPIE, 2015, 94482D.
[25] Grachev, Y. V., Kokliushkin, V. A. & Petrov, N. V. An open-source 3D-printed terahertz pulse time-domain holographic detection module for broadband beam inspection. Proceedings of 2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Buffalo, United States: IEEE, 2020.
[26] Grachev, Y. V., Kokliushkin, V. A. & Petrov, N. V. Open-source 3D-printed terahertz pulse time-domain holographic detection module. Applied Optics 61, B307-B313 (2022). doi: 10.1364/AO.444979
[27] Trenk, M., Franke, M. & Schwenke, H. The “Virtual CMM” a software tool for uncertainty evaluation – practical application in an accredited calibration lab. Proceedings of ASPE. Uncertainty Analysis in Measurement and Design. State College, Pennsylvania, United States: ASPE, 2004, 1–6.
[28] Küng, A. et al. Application of a virtual coordinate measuring machine for measurement uncertainty estimation of aspherical lens parameters. Measurement Science and Technology 25, 094011 (2014). doi: 10.1088/0957-0233/25/9/094011
[29] Giusca, C. L., Leach, R. K. & Forbes, A. B. A virtual machine-based uncertainty evaluation for a traceable areal surface texture measuring instrument. Measurement 44, 988-993 (2011). doi: 10.1016/j.measurement.2011.02.011
[30] Moroni, G., Sy am, W. P. & Petrò, S. A simulation method to estimate task-specific uncertainty in 3D microscopy. Measurement 122, 402-416 (2018). doi: 10.1016/j.measurement.2018.01.026
[31] Su, R. & Leach, R. Physics-based virtual coherence scanning interferometer for surface measurement. Light: Advanced Manufacturing 2, 120 (2021). doi: 10.37188/lam.2021.009
[32] Sharma, A. K., Tsang, T. & Rao, T. Theoretical and experimental study of passive spatiotemporal shaping of picosecond laser pulses. Physical Review Special Topics - Accelerators and Beams 12, 033501 (2009). doi: 10.1103/PhysRevSTAB.12.033501
[33] Wu, K. et al. Modelling of free-form conformal metasurfaces. Nature Communications 9, 3494 (2018). doi: 10.1038/s41467-018-05579-6
[34] Alexeyev, C. N. et al. Topological charge conversion and localization in defected heterogeneous multihelicoidal optical fibers. Journal of Optics 21, 085601 (2019). doi: 10.1088/2040-8986/ab2951
[35] Masson, J.-B. & Gallot, G. Terahertz achromatic quarter-wave plate. Optics Letters 31, 265-267 (2006). doi: 10.1364/OL.31.000265
[36] Belashov, A. V. et al. Effect of object thickness on ultrashort pulse diffraction. Applied Optics 58, 9434-9442 (2019). doi: 10.1364/AO.58.009434
[37] Kulya, M. et al. Hyperspectral data denoising for terahertz pulse time-domain holography. Optics Express 27, 18456-18476 (2019). doi: 10.1364/OE.27.018456
[38] Balbekin, N. et al. The modeling peculiarities of diffractive propagation of the broadband terahertz two-dimensional Field. Physics Procedia, 73. 4th International Conference of Photonics and Information Optics, PhIO. Moscow, Russian Federation: Elsevier, 2015, 49–53.
[39] Kulya, M. S. et al. Fast Terahertz Spectroscopic Holographic Assessment of Optical Properties of Diabetic Blood Plasma. Journal of Infrared,Millimeter,and Terahertz Waves 41, 1041-1056 (2020). doi: 10.1007/s10762-020-00728-9
[40] Jiang, Z. & Zhang, X.-C. Terahertz imaging via electrooptic effect. IEEE Transactions on Microwave Theory and Techniques 47, 2644-2650 (1999). doi: 10.1109/22.809019
[41] Kulya, M. et al. Terahertz pulse time-domain holography with balance detection: complex-domain sparse imaging. Applied Optics 58, G61-G70 (2019). doi: 10.1364/AO.58.000G61
[42] Kulya, M. S. et al. Vectorial terahertz pulse timedomain holography for broadband optical wavefront sensing. Proceedings of SPIE, 11279. Millimeter, and Submillimeter-Wave Technology and Applications XⅢ. San Francisco, California, United States: SPIE, 2020, 112790D.
[43] Soskin, M. S. & Vasnetsov, M. V. Singular optics. Progress in Optics, 42, 219–276. 2001.
[44] Bekshaev, A. et al. Optical vortex generation by volume holographic elements with embedded phase singularity: Effects of misalignments. Ukrainian Journal of Physical Optics 14, 171-186 (2013). doi: 10.3116/16091833/14/4/171/2013
[45] Bekshaev, A. & Karamoch, A. Spatial characteristics of vortex light beams produced by diffraction gratings with embedded phase singularity. Optics Communications 281, 1366-1374 (2008). doi: 10.1016/j.optcom.2007.11.032
[46] Bekshaev, A. Y. et al. Structure of optical vortices produced by holographic gratings with "fork" geometry: Kummer beams. arXiv 0906.2619 (2009).
[47] Pas’ ko, V. A. et al. Analysis of optical vortex beams with integer and fractional topological charge. Proceedings of SPIE, 5477. Sixth International Conference on Correlation Optics, Chernivtsi, Ukraine: SPIE, 2004, 83–88.
[48] Chernykh, A. V. & Petrov, N. V. Optical vortex trajectory of the edge-diffracted single-charged Laguerre-Gaussian beam. Optics and Lasers in Engineering 139, 106504 (2021). doi: 10.1016/j.optlaseng.2020.106504
[49] Khoroshun, A. et al. Singular skeleton of a Laguerre–Gaussian beam transformed by the doublephase-ramp converter. Applied Optics 56, 3428-3434 (2017). doi: 10.1364/AO.56.003428
[50] Bekshaev, A. et al. Controllable singular skeleton formation by means of the Kummer optical-vortex diffraction at a rectilinear phase step. Journal of Optics 23, 034002 (2021). doi: 10.1088/2040-8986/abcea7