[1] Lakowicz, J. R. Principles of Fluorescence Spectroscopy. (New York: Springer, 2006).
[2] Mondal, P. P. Temporal resolution in fluorescence imaging. Frontiers in Molecular Biosciences 1, 11 (2014).
[3] Pan, W. et al. Recent advances in NIR-II fluorescence/photoacoustic dual-modality imaging probes. Coordination Chemistry Reviews 514, 215907 (2024). doi: 10.1016/j.ccr.2024.215907
[4] Rehman, K. U., Das, S. & Kao, F. J. Photon counting based pump-probe technique for quantitative characterization of fluorescence in a lock-in free detection manner. Laser Physics Letters 21, 065701 (2024). doi: 10.1088/1612-202X/ad4854
[5] Swaminathan, M. Fluorescence and phosphorescence spectroscopy. in Spectroscopy (eds Gupta, P. , Das, S. S. & Singh, S. S. ) (Singapore: Jenny Stanford Publishing, 2023), 279-306.
[6] Hambly, A. C. & Wünsch, U. J. Fluorescence Excitation Emission Matrix (EEM) spectroscopy. in Experimental Methods for Membrane Applications in Desalination and Water Treatment (eds Salinas-Rodríguez, S. G. & Villacorte, L. O. ) (London: IWA Publishing, 2024), 265-286.
[7] Feng, G. X., Zhang, G. Q. & Ding, D. Design of superior phototheranostic agents guided by Jablonski diagrams. Chemical Society Reviews 49, 8179-8234 (2020). doi: 10.1039/D0CS00671H
[8] Dimitriev, O. P. Dynamics of excitons in conjugated molecules and organic semiconductor systems. Chemical Reviews 122, 8487-8593 (2022). doi: 10.1021/acs.chemrev.1c00648
[9] Chacko, J. V. , Sagar, M. A. K. & Eliceiri, K. W. Fluorescence lifetime: techniques, analysis, and applications in the life sciences. in Imaging from Cells to Animals In Vivo (eds Barroso, M. & Intes, X. ) (Boca Raton: CRC Press, 2020), 141-168.
[10] Ranjit, S. et al. Advances in fluorescence microscopy techniques to study kidney function. Nature Reviews Nephrology 17, 128-144 (2021). doi: 10.1038/s41581-020-00337-8
[11] Xiao, D. Fast fluorescence lifetime imaging and sensing via deep learning. PhD thesis, University of Strathclyde, Glasgow, 2022.
[12] Ma, J. B. et al. Design and application of fluorescent probes to detect cellular physical microenvironments. Chemical Reviews 124, 1738-1861 (2024). doi: 10.1021/acs.chemrev.3c00573
[13] Kalinina, S. et al. Bioenergetic alterations of metabolic redox coenzymes as NADH, FAD and FMN by means of fluorescence lifetime imaging techniques. International Journal of Molecular Sciences 22, 5952 (2021). doi: 10.3390/ijms22115952
[14] Ouyang, Y. Z. et al. FLIM as a promising tool for cancer diagnosis and treatment monitoring. Nano-Micro Letters 13, 133 (2021). doi: 10.1007/s40820-021-00653-z
[15] Zhang, J. X. et al. Measuring metabolic changes in cancer cells using two-photon fluorescence lifetime imaging microscopy and machine-learning analysis. Journal of Biophotonics 18, e202400426 (2025). doi: 10.1002/jbio.202400426
[16] Wang, Q. et al. Deep learning in ex-vivo lung cancer discrimination using fluorescence lifetime endomicroscopic images. Proceedings of 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Montreal, QC, Canada: IEEE, 2020, 1891-1894.
[17] Marsden, M. et al. Intraoperative margin assessment in oral and oropharyngeal cancer using label-free fluorescence lifetime imaging and machine learning. IEEE Transactions on Biomedical Engineering 68, 857-868 (2021). doi: 10.1109/TBME.2020.3010480
[18] Cong, S. & Zhou, Y. A review of convolutional neural network architectures and their optimizations. Artificial Intelligence Review 56, 1905-1969 (2023). doi: 10.1007/s10462-022-10213-5
[19] Periasamy, A. & Clegg, R. M. FLIM Microscopy in Biology and Medicine. (New York: Chapman and Hall/CRC, 2009).
[20] Jiang, X. Y. et al. Deep learning for medical image-based cancer diagnosis. Cancers 15, 3608 (2023). doi: 10.3390/cancers15143608
[21] Okkelman, I. A. et al. A deeper understanding of intestinal organoid metabolism revealed by combining fluorescence lifetime imaging microscopy (FLIM) and extracellular flux analyses. Redox Biology 30, 101420 (2020). doi: 10.1016/j.redox.2019.101420
[22] Race, A. M. et al. Deep learning-based annotation transfer between molecular imaging modalities: an automated workflow for multimodal data integration. Analytical Chemistry 93, 3061-3071 (2021). doi: 10.1021/acs.analchem.0c02726
[23] Ebrecht, R., Don Paul, C. & Wouters, F. S. Fluorescence lifetime imaging microscopy in the medical sciences. Protoplasma 251, 293-305 (2014). doi: 10.1007/s00709-013-0598-4
[24] Sarder, P., Maji, D. & Achilefu, S. Molecular probes for fluorescence lifetime imaging. Bioconjugate Chemistry 26, 963-974 (2015). doi: 10.1021/acs.bioconjchem.5b00167
[25] Suhling, K. et al. Fluorescence lifetime imaging (FLIM): basic concepts and some recent developments. Medical Photonics 27, 3-40 (2015). doi: 10.1016/j.medpho.2014.12.001
[26] Datta, R. et al. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. Journal of Biomedical Optics 25, 071203 (2020).
[27] Goldys, E. M. Fluorescence Applications in Biotechnology and Life Sciences. (Hoboken: John Wiley & Sons, 2009).
[28] Provenzano, P. P., Eliceiri, K. W. & Keely, P. J. Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clinical & Experimental Metastasis 26, 357-370 (2009).
[29] Kolenc, O. I. & Quinn, K. P. Evaluating cell metabolism through autofluorescence imaging of NAD(P)H and FAD. Antioxidants & Redox Signaling 30, 875-889 (2019).
[30] Maharjan, S. et al. Advanced 3D imaging and organoid bioprinting for biomedical research and therapeutic applications. Advanced Drug Delivery Reviews 208, 115237 (2024). doi: 10.1016/j.addr.2024.115237
[31] Park, J. & Gao, L. Advancements in fluorescence lifetime imaging microscopy instrumentation: towards high speed and 3D. Current Opinion in Solid State and Materials Science 30, 101147 (2024). doi: 10.1016/j.cossms.2024.101147
[32] Torrado, B. et al. Fluorescence lifetime imaging microscopy. Nature Reviews Methods Primers 4, 80 (2024). doi: 10.1038/s43586-024-00358-8
[33] Castello, M. et al. A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM. Nature Methods 16, 175-178 (2019). doi: 10.1038/s41592-018-0291-9
[34] Padilla-Parra, S. et al. Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells. Biophysical Journal 95, 2976-2988 (2008). doi: 10.1529/biophysj.108.131276
[35] van Munster, E. B. & Gadella, T. W. J. Fluorescence lifetime imaging microscopy (FLIM). in Microscopy Techniques (ed Rietdorf, J. ) (Berlin, Heidelberg: Springer, 2005), 143-175.
[36] O’Connor, D. V. & Phillips, D. Time-Correlated Single Photon Counting. (Amsterdam: Elsevier, 1984).
[37] Becker, W. Advanced Time-Correlated Single Photon Counting Applications. (Cham: Springer, 2015), 642.
[38] Hirvonen, L. M. & Suhling, K. Fast timing techniques in FLIM applications. Frontiers in Physics 8, 161 (2020). doi: 10.3389/fphy.2020.00161
[39] Rehman, K. U. et al. High temporal resolution and polarization resolved fluorescence lifetime measurements through stimulated emission. Methods and Applications in Fluorescence 8, 024008 (2020). doi: 10.1088/2050-6120/ab7c36
[40] Berezin, M. Y. & Achilefu, S. Fluorescence lifetime measurements and biological imaging. Chemical Reviews 110, 2641-2684 (2010). doi: 10.1021/cr900343z
[41] Adhikari, M. et al. Review of fluorescence lifetime imaging microscopy (FLIM) data analysis using machine learning. Journal of Experimental and Theoretical Analyses 1, 44-63 (2023). doi: 10.3390/jeta1010004
[42] Gonzalez, E., Park, S. J. & Laman, D. M. Fluorescence lifetime measurements with simple correction for instrument temporal response in the advanced undergraduate laboratory. American Journal of Physics 88, 1012-1018 (2020). doi: 10.1119/10.0001752
[43] Emiliani, V. et al. Low-intensity two-dimensional imaging of fluorescence lifetimes in living cells. Applied Physics Letters 83, 2471-2473 (2003). doi: 10.1063/1.1604938
[44] Verveer, P. J. & Hanley, Q. S. Frequency domain FLIM theory, instrumentation, and data analysis. Laboratory Techniques in Biochemistry and Molecular Biology 33, 59-94 (2009).
[45] Elder, A. D. et al. Calibration of a wide-field frequency-domain fluorescence lifetime microscopy system using light-emitting diodes as light sources. Journal of Microscopy 224, 166-180 (2006). doi: 10.1111/j.1365-2818.2006.01689.x
[46] Periasamy, A. et al. FRET microscopy: basics, issues and advantages of FLIM-FRET imaging. in Advanced Time-Correlated Single Photon Counting Applications (ed Becker, W. ) (Cham: Springer, 2015), 249-276.
[47] Houston, J. P. , Valentino, S. & Bitton, A. Fluorescence lifetime measurements and analyses: protocols using flow cytometry and high-throughput microscopy. in Flow Cytometry Protocols (eds Hawley, T. S. & Hawley, R. G. ) (New York: Humana, 2024), 323-351.
[48] Gadella, T. W. J. Jr. , Jovin, T. M. & Clegg, R. M. Fluorescence lifetime imaging microscopy (FLIM): spatial resolution of microstructures on the nanosecond time scale. Biophysical Chemistry 48, 221-239 (1993).
[49] Serafino, M. J., Applegate, B. E. & Jo, J. A. Direct frequency domain fluorescence lifetime imaging using field programmable gate arrays for real time processing. Review of Scientific Instruments 91, 033708 (2020). doi: 10.1063/1.5127297
[50] Fujiwara, T., Lim, E. C. & Moule, D. C. A one-photon laser induced fluorescence and a sequential two-photon optical–optical double resonance excitation study of the vibrational structure of the B̃1A1 (ππ*) state of thiophosgene, Cl2CS. The Journal of Chemical Physics 119, 7741-7748 (2003). doi: 10.1063/1.1609391
[51] Benninger, R. K. P. & Piston, D. W. Two-photon excitation microscopy for the study of living cells and tissues. Current Protocols in Cell Biology 59, 4.11.1-4.11.24 (2013). doi: 10.1002/0471143030.cb0411s59
[52] Fang, B. et al. Confinement fluorescence effect (CFE): lighting up life by enhancing the absorbed photon energy utilization efficiency of fluorophores. Coordination Chemistry Reviews 440, 213979 (2021). doi: 10.1016/j.ccr.2021.213979
[53] Icha, J. et al. Phototoxicity in live fluorescence microscopy, and how to avoid it. BioEssays 39, 1700003 (2017). doi: 10.1002/bies.201700003
[54] Wu, L. L. et al. Two-photon small-molecule fluorescence-based agents for sensing, imaging, and therapy within biological systems. Chemical Society Reviews 50, 702-734 (2021). doi: 10.1039/D0CS00861C
[55] Mazumder, N. et al. Label-free non-linear multimodal optical microscopy—basics, development, and applications. Frontiers in Physics 7, 170 (2019). doi: 10.3389/fphy.2019.00170
[56] Nolte, S. , Schrempel, F. & Dausinger, F. Ultrashort pulse laser technology. (Cham: Springer, 2016).
[57] Pires, H. et al. Ultrashort pulse generation in the mid-IR. Progress in Quantum Electronics 43, 1-30 (2015). doi: 10.1016/j.pquantelec.2015.07.001
[58] Denk, W. Two-photon excitation in functional biological imaging. Journal of Biomedical Optics 1, 296-304 (1996). doi: 10.1117/12.242945
[59] Lee, M. et al. Two-photon fluorescence microscopy and applications in angiogenesis and related molecular events. Tissue Engineering Part B: Reviews 28, 926-937 (2022). doi: 10.1089/ten.teb.2021.0140
[60] Wang, B. G., König, K. & Halbhuber, K. J. Two-photon microscopy of deep intravital tissues and its merits in clinical research. Journal of Microscopy 238, 1-20 (2010). doi: 10.1111/j.1365-2818.2009.03330.x
[61] Rubart, M. Two-photon microscopy of cells and tissue. Circulation Research 95, 1154-1166 (2004). doi: 10.1161/01.RES.0000150593.30324.42
[62] Sydor, M. J. et al. Fluorescence lifetime imaging microscopy and time-resolved anisotropy of nanomaterial-induced changes to red blood cell membranes. Methods and Applications in Fluorescence 9, 035002 (2021). doi: 10.1088/2050-6120/abf424
[63] Jameson, D. M. & Ross, J. A. Fluorescence polarization/anisotropy in diagnostics and imaging. Chemical Reviews 110, 2685-2708 (2010). doi: 10.1021/cr900267p
[64] Rehman, K. U., Das, S. & Kao, F. J. High-contrast fluorescence polarization microscopy through stimulated emission. Applied Physics Express 14, 022008 (2021). doi: 10.35848/1882-0786/abdc9d
[65] Siegel, J. et al. Wide-field time-resolved fluorescence anisotropy imaging (TR-FAIM): imaging the rotational mobility of a fluorophore. Review of Scientific Instruments 74, 182-192 (2003). doi: 10.1063/1.1519934
[66] Chung, C. W. Fluorescence lifetime imaging microscopy to study protein aggregation in the context of neurodegenerative diseases. PhD thesis, University of Cambridge, Cambridge, 2022.
[67] Ishikawa-Ankerhold, H. C., Ankerhold, R. & Drummen, G. P. C. Advanced fluorescence microscopy techniques—FRAP, FLIP, FLAP, FRET and FLIM. Molecules 17, 4047-4132 (2012). doi: 10.3390/molecules17044047
[68] Ma, Y. Y. Computational fluorescence lifetime imaging microscopy for biomedical sciences. PhD thesis, University of California, Los Angeles, 2023.
[69] Lu, J. Z. et al. Quantitative analysis of acquisition speed of high-precision FLIM technologies via simulation and modeling. Photonics 11, 973 (2024). doi: 10.3390/photonics11100973
[70] Yuan, X. T. Investigating the fundamental limitations of real-time, in vivo multiphoton fluorescence lifetime imaging microscopy and its application to agricultural herbicide treatments in plants. PhD thesis, University of Notre Dame, South Bend, 2024.
[71] Gerritsen, H. C. et al. Time domain FLIM: theory, instrumentation, and data analysis. Laboratory Techniques in Biochemistry and Molecular Biology 33, 95-132 (2009).
[72] Gouzou, D. et al. Applications of machine learning in time-domain fluorescence lifetime imaging: a review. Methods and Applications in Fluorescence 12, 022001 (2024). doi: 10.1088/2050-6120/ad12f7
[73] Yahav, G. et al. Reference-independent wide field fluorescence lifetime measurements using frequency-domain (FD) technique based on phase and amplitude crossing point. Journal of Biophotonics 10, 1198-1207 (2017). doi: 10.1002/jbio.201600220
[74] Elson, D. et al. Time-domain fluorescence lifetime imaging applied to biological tissue. Photochemical & Photobiological Sciences 3, 795-801 (2004).
[75] Spring, B. Q. & Clegg, R. M. Frequency-domain FILM. in FLIM Microscopy in Biology and Medicine (eds Periasamy, A. & Clegg, R. M. ) (New York: Chapman and Hall/CRC, 2009), 147-174.
[76] Kellerer, T. et al. Comprehensive investigation of parameters influencing fluorescence lifetime imaging microscopy in frequency- and time-domain illustrated by phasor plot analysis. International Journal of Molecular Sciences 23, 15885 (2022). doi: 10.3390/ijms232415885
[77] Becker, W. Fluorescence lifetime imaging—techniques and applications. Journal of Microscopy 247, 119-136 (2012). doi: 10.1111/j.1365-2818.2012.03618.x
[78] Chang, C. W., Sud, D. & Mycek, M. A. Fluorescence lifetime imaging microscopy. Methods in Cell Biology 81, 495-524 (2007).
[79] Becker, W. et al. High-speed FLIM data acquisition by time-correlated single-photon counting. Proceedings of Multiphoton Microscopy in the Biomedical Sciences IV. San Jose, CA, USA: SPIE, 2004, 27-35.
[80] Gadella, T. W. J., van Hoek, A. & Visser, A. J. W. G. Construction and characterization of a frequency-domain fluorescence lifetime imaging microscopy system. Journal of Fluorescence 7, 35-43 (1997). doi: 10.1007/BF02764575
[81] Leray, A. et al. Generalization of the polar representation in time domain fluorescence lifetime imaging microscopy for biological applications: practical implementation. Journal of Microscopy 248, 66-76 (2012). doi: 10.1111/j.1365-2818.2012.03651.x
[82] Franke, R. & Holst, G. A. Frequency-domain fluorescence lifetime imaging system (pco. flim) based on a in-pixel dual tap control CMOS image sensor. Proceedings of Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XIII. San Francisco, CA, USA: SPIE, 2015, 93281K.
[83] Förster, N. Fluorescence lifetime imaging for chemical sensing. Bachelor's thesis, Tampere University, Tampere, 2020.
[84] McGinty, J. et al. Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM. Journal of Physics D: Applied Physics 42, 135103 (2009). doi: 10.1088/0022-3727/42/13/135103
[85] Bitton, A. et al. A review of new high-throughput methods designed for fluorescence lifetime sensing from cells and tissues. Frontiers in Physics 9, 648553 (2021). doi: 10.3389/fphy.2021.648553
[86] Eichorst, J. P. , Teng, K. W. & Clegg, R. M. Fluorescence lifetime imaging techniques: frequency-domain FLIM. in Fluorescence Lifetime Spectroscopy and Imaging: Principles and Applications in Biomedical Diagnostics (eds Marcu, L. , French, P. M. W. & Elson, D. S. ) (Boca Raton: CRC Press, 2014), 165-186.
[87] Kaufmann, T. et al. Direct measurement of protein-protein interactions by FLIM-FRET at UV laser-induced DNA damage sites in living cells. Nucleic Acids Research 48, e122 (2020). doi: 10.1093/nar/gkaa859
[88] Alfonso-Garcia, A. et al. Mesoscopic fluorescence lifetime imaging: fundamental principles, clinical applications and future directions. Journal of Biophotonics 14, e202000472 (2021). doi: 10.1002/jbio.202000472
[89] Suhling, K., French, P. M. W. & Phillips, D. Time-resolved fluorescence microscopy. Photochemical & Photobiological Sciences 4, 13-22 (2005).
[90] Serafino, M. J. & Jo, J. A. Direct frequency domain fluorescence lifetime imaging using simultaneous ultraviolet and visible excitation. Biomedical Optics Express 14, 1608-1625 (2023). doi: 10.1364/BOE.480287
[91] Wang, Q., Xie, L. J. & Ying, Y. B. Overview of imaging methods based on terahertz time-domain spectroscopy. Applied Spectroscopy Reviews 57, 249-264 (2022). doi: 10.1080/05704928.2021.1875480
[92] Hirvonen, L. M. & Suhling, K. Fast timing techniques in FLIM applications. Frontiers in Physics 8, 161 (2020). doi: 10.3389/fphy.2020.00161
[93] Bagheri, N. Fluorescence-based fluctuation techniques for molecular, cellular and tissue studies. PhD thesis, KTH Royal Institute of Technology, Stockholm, 2025.
[94] Yuan, X. T. et al. Overcoming the fundamental limitation of frequency-domain fluorescence lifetime imaging microscopy spatial resolution. Proceedings of Single Molecule Spectroscopy and Superresolution Imaging XIV. SPIE, 2021, 116500M. https://doi.org/10.1117/12.2577284.
[95] Esposito, A. , & Wouters, F. S. (2004). Fluorescence lifetime imaging microscopy. Current Protocols in Cell Biology, 25(1), 4-14.
[96] Shirmanova, M. V. et al. Exploring tumor metabolism with time-resolved fluorescence methods: from single cells to a whole tumor. in Multimodal Optical Diagnostics of Cancer (eds Tuchin, V. V. , Popp, J. & Zakharov, V. ) (Cham: Springer, 2020), 133-155.
[97] Zipfel, W. R. et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proceedings of the National Academy of Sciences of the United States of America 100, 7075-7080 (2003).
[98] Schneckenburger, H. & Koenig, K. Fluorescence decay kinetics and imaging of NAD(P)H and flavins as metabolic indicators. Optical Engineering 31, 1447-1451 (1992). doi: 10.1117/12.57704
[99] Cong, A. et al. Two-photon fluorescence lifetime imaging of intrinsic NADH in three-dimensional tumor models. Cytometry Part A 95, 80-92 (2019). doi: 10.1002/cyto.a.23632
[100] Luo, T. et al. Phasor–FLIM as a screening tool for the differential diagnosis of actinic keratosis, Bowen’s disease, and basal cell carcinoma. Analytical Chemistry 89, 8104-8111 (2017). doi: 10.1021/acs.analchem.7b01681
[101] Alam, S. R. et al. Investigation of mitochondrial metabolic response to doxorubicin in prostate cancer cells: an NADH, FAD and tryptophan FLIM assay. Scientific Reports 7, 10451 (2017). doi: 10.1038/s41598-017-10856-3
[102] Becker, L. et al. Raman imaging and fluorescence lifetime imaging microscopy for diagnosis of cancer state and metabolic monitoring. Cancers 13, 5682 (2021). doi: 10.3390/cancers13225682
[103] Okkelman, I. A., Papkovsky, D. B. & Dmitriev, R. I. Estimation of the mitochondrial membrane potential using fluorescence lifetime imaging microscopy. Cytometry Part A 97, 471-482 (2020). doi: 10.1002/cyto.a.23886
[104] Day, R. N. Measuring protein interactions using Förster resonance energy transfer and fluorescence lifetime imaging microscopy. Methods 66, 200-207 (2014). doi: 10.1016/j.ymeth.2013.06.017
[105] McGhee, E. J. et al. FLIM-FRET imaging in vivo reveals 3D-environment spatially regulates RhoGTPase activity during cancer cell invasion. Small GTPases 2, 239-244 (2011). doi: 10.4161/sgtp.2.4.17275
[106] Keese, M. et al. Fluorescence lifetime imaging microscopy of chemotherapy-induced apoptosis resistance in a syngenic mouse tumor model. International Journal of Cancer 126, 104-113 (2010). doi: 10.1002/ijc.24730
[107] Wadiura, L. I. et al. Influence of dexamethasone on visible 5-ALA fluorescence and quantitative protoporphyrin IX accumulation measured by fluorescence lifetime imaging in glioblastomas: is pretreatment obligatory before fluorescence-guided surgery? Journal of Neurosurgery 136, 1542-1550 (2021).
[108] Shirshin, E. A. et al. Label-free sensing of cells with fluorescence lifetime imaging: the quest for metabolic heterogeneity. Proceedings of the National Academy of Sciences of the United States of America 119, 2118241119 (2022).
[109] Shah, A. T. et al. In vivo autofluorescence imaging of tumor heterogeneity in response to treatment. Neoplasia 17, 862-870 (2015).
[110] Skala, M. C. et al. In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia. Journal of Biomedical Optics 12, 024014 (2007).
[111] Wallrabe, H. et al. Segmented cell analyses to measure redox states of autofluorescent NAD(P)H, FAD & Trp in cancer cells by FLIM. Scientific Reports 8, 79 (2018). doi: 10.1038/s41598-017-18634-x
[112] Nsiah-Sefaa, A. & McKenzie, M. Combined defects in oxidative phosphorylation and fatty acid β-oxidation in mitochondrial disease. Bioscience Reports 36, e00313 (2016). doi: 10.1042/BSR20150295
[113] Gooz, M. & Maldonado, E. N. Fluorescence microscopy imaging of mitochondrial metabolism in cancer cells. Frontiers in Oncology 13, 1152553 (2023). doi: 10.3389/fonc.2023.1152553
[114] Sun, L. C. et al. Metabolic reprogramming for cancer cells and their microenvironment: beyond the Warburg Effect. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1870, 51-66 (2018). doi: 10.1016/j.bbcan.2018.06.005
[115] Blinova, K. et al. Distribution of mitochondrial NADH fluorescence lifetimes: steady-state kinetics of matrix NADH interactions. Biochemistry 44, 2585-2594 (2005). doi: 10.1021/bi0485124
[116] Patalay, R. et al. Quantification of cellular autofluorescence of human skin using multiphoton tomography and fluorescence lifetime imaging in two spectral detection channels. Biomedical Optics Express 2, 3295-3308 (2011). doi: 10.1364/BOE.2.003295
[117] Mayevsky, A. & Rogatsky, G. G. Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies. American Journal of Physiology-Cell Physiology 292, C615-C640 (2007). doi: 10.1152/ajpcell.00249.2006
[118] Drozdowicz-Tomsia, K. et al. Multiphoton fluorescence lifetime imaging microscopy reveals free-to-bound NADH ratio changes associated with metabolic inhibition. Journal of Biomedical Optics 19, 086016 (2014). doi: 10.1117/1.JBO.19.8.086016
[119] Zhang, Z. H. et al. Redox ratio of mitochondria as an indicator for the response of photodynamic therapy. Journal of Biomedical Optics 9, 772-778 (2004). doi: 10.1117/1.1760759
[120] Shah, A. T. & Skala, M. C. Ex vivo label-free microscopy of head and neck cancer patient tissues. Proceedings of Multiphoton Microscopy in the Biomedical Sciences. San Francisco, CA, USA: SPIE, 2015, 93292B.
[121] de Andrade Natal, R. et al. Increased metabolic activity detected by FLIM in human breast cancer cells with desmoplastic reaction: a pilot study. Proceedings of Advanced Microscopy Techniques IV; and Neurophotonics II. Munich, Germany: SPIE, 2015, 95360L.
[122] Fatakdawala, H. et al. Multimodal in vivo imaging of oral cancer using fluorescence lifetime, photoacoustic and ultrasound techniques. Biomedical Optics Express 4, 1724-1741 (2013). doi: 10.1364/BOE.4.001724
[123] Cao, R. F. et al. Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H. Cytometry Part A 95, 110-121 (2019). doi: 10.1002/cyto.a.23711
[124] Skala, M. C. et al. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proceedings of the National Academy of Sciences of the United States of America 104, 19494-19499 (2007).
[125] Yang, X., Ha, G. & Needleman, D. J. A coarse-grained NADH redox model enables inference of subcellular metabolic fluxes from fluorescence lifetime imaging. eLife 10, e73808 (2021). doi: 10.7554/eLife.73808
[126] Kumar, S. et al. FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ. ChemPhysChem 12, 609-626 (2011). doi: 10.1002/cphc.201000874
[127] Koninti, R. K. et al. Loading of an anti-cancer drug into mesoporous silica nano-channels and its subsequent release to DNA. Nanoscale 8, 18436-18445 (2016). doi: 10.1039/C6NR06285G
[128] Saari, H. et al. FLIM reveals alternative EV-mediated cellular up-take pathways of paclitaxel. Journal of Controlled Release 284, 133-143 (2018). doi: 10.1016/j.jconrel.2018.06.015
[129] Caracciolo, G. et al. Human biomolecular corona of liposomal doxorubicin: the overlooked factor in anticancer drug delivery. ACS Applied Materials & Interfaces 10, 22951-22962 (2018).
[130] Tawagi, E. et al. Differential toxicity of gold-doxorubicin in cancer cells vs. cardiomyocytes as measured by real-time growth assays and fluorescence lifetime imaging microscopy (FLIM). Analyst 140, 5732-5741 (2015).
[131] Quagliarini, E. et al. Mechanistic insights into the release of doxorubicin from graphene oxide in cancer cells. Nanomaterials 10, 1482 (2020). doi: 10.3390/nano10081482
[132] Suarasan, S. et al. Intracellular dynamic disentangling of doxorubicin release from luminescent nanogold carriers by fluorescence lifetime imaging microscopy (FLIM) under two-photon excitation. ACS Applied Materials & Interfaces 11, 7812-7822 (2019).
[133] Nobis, M. et al. Intravital FLIM-FRET imaging reveals dasatinib-induced spatial control of src in pancreatic cancer. Cancer research 73, 4674-4686 (2013).
[134] Kawanabe, S. et al. Applying fluorescence lifetime imaging microscopy to evaluate the efficacy of anticancer drugs. Methods and Applications in Fluorescence 3, 025006 (2015). doi: 10.1088/2050-6120/3/2/025006
[135] Kundu, S., Ghosh, M. & Sarkar, N. State of the art and perspectives on the biofunctionalization of fluorescent metal nanoclusters and carbon quantum dots for targeted imaging and drug delivery. Langmuir 37, 9281-9301 (2021). doi: 10.1021/acs.langmuir.1c00732
[136] Dougherty, T. J. et al. Photodynamic therapy. Journal of the National Cancer Institute 90, 889-905 (1998). doi: 10.1093/jnci/90.12.889
[137] Baskaran, R., Lee, J. & Yang, S. G. Clinical development of photodynamic agents and therapeutic applications. Biomaterials Research 22, 25 (2018). doi: 10.1186/s40824-018-0140-z
[138] Dąbrowski, J. M. Reactive oxygen species in photodynamic therapy: mechanisms of their generation and potentiation. Advances in Inorganic Chemistry 70, 343-394 (2017).
[139] Luo, H. Q. & Gao, S. Recent advances in fluorescence imaging-guided photothermal therapy and photodynamic therapy for cancer: from near-infrared-I to near-infrared-II. Journal of Controlled Release 362, 425-445 (2023). doi: 10.1016/j.jconrel.2023.08.056
[140] Rueck, A. C. et al. FLIM and SLIM for molecular imaging in PDT. Proceedings of Multiphoton Microscopy in the Biomedical Sciences V. San Jose, CA, USA: SPIE, 2005, 182-187.
[141] Bassler, M. C. et al. Fluorescence lifetime imaging unravels the pathway of glioma cell death upon hypericin-induced photodynamic therapy. RSC Chemical Biology 5, 1219-1231 (2024). doi: 10.1039/D4CB00107A
[142] Rück, A. et al. Fluorescence lifetime imaging in PDT. An overview. Medical Laser Application 20, 125-129 (2005). doi: 10.1016/j.mla.2005.03.009
[143] Mikami, H., Gao, L. & Goda, K. Ultrafast optical imaging technology: principles and applications of emerging methods. Nanophotonics 5, 497-509 (2016). doi: 10.1515/nanoph-2016-0026
[144] Yang, J. et al. Titanium: sapphire-on-insulator integrated lasers and amplifiers. Nature 630, 853-859 (2024). doi: 10.1038/s41586-024-07457-2
[145] Dos Santos, D. N. S. et al. Bromine indirubin FLIM/PLIM sensors to measure oxygen in normoxic and hypoxic PDT conditions. Photodiagnosis and Photodynamic Therapy 45, 103964 (2024). doi: 10.1016/j.pdpdt.2024.103964
[146] Chen, D. D. et al. Aggregation-induced emission cyclometallated Iridium(III) complex for multi-photon FLIM imaging-guided photodynamic therapy. Dyes and Pigments 215, 111271 (2023). doi: 10.1016/j.dyepig.2023.111271
[147] Przygoda, M. et al. Cellular mechanisms of singlet oxygen in photodynamic therapy. International Journal of Molecular Sciences 24, 16890 (2023). doi: 10.3390/ijms242316890
[148] McCarthy, J. et al. A proposal for the Dartmouth summer research project on artificial intelligence. AI Magazine 27, 12 (2006).
[149] Zhang, J. et al. Machine learning architecture to predict drug response based on cancer cell FLIM images. Multiphoton Microscopy in the Biomedical Sciences XXI 11648, 116-122 (2021).
[150] Zhuo, G. Y. et al. Label-free multimodal nonlinear optical microscopy for biomedical applications. Journal of Applied Physics 129, 214901 (2021). doi: 10.1063/5.0036341
[151] Melanthota, S. K. et al. Deep learning-based image processing in optical microscopy. Biophysical Reviews 14, 463-481 (2022). doi: 10.1007/s12551-022-00949-3
[152] Puelles, E. et al. Midbrain. in The Mouse Nervous System (eds Watson, C. , Paxinos, G. & Puelles, L. ) (Amsterdam: Elsevier, 2012), 337-359.
[153] Sharafaddini, A. M. , Esfahani, K. K. & Mansouri, N. Deep learning approaches to detect breast cancer: a comprehensive review. Multimedia Tools and Applications 83(28), 71451 - 71493 (2024).
[154] Butte, P. V. et al. Fluorescence lifetime spectroscopy for guided therapy of brain tumors. Neuroimage 54 Suppl 1, S125-S135 (2011).
[155] Wu, G. et al. Artificial neural network approaches for fluorescence lifetime imaging techniques. Optics Letters 41, 2561-2564 (2016). doi: 10.1364/OL.41.002561
[156] Smith, J. T. et al. Fast fit-free analysis of fluorescence lifetime imaging via deep learning. Proceedings of the National Academy of Sciences of the United States of America 116, 24019-24030 (2019).
[157] Guo, S. X. et al. FLIM data analysis based on Laguerre polynomial decomposition and machine-learning. Journal of Biomedical Optics 26, 022909 (2021).
[158] Yao, R. Y. et al. Net-FLICS: fast quantitative wide-field fluorescence lifetime imaging with compressed sensing–a deep learning approach. Light: Science & Applications 8, 26 (2019).
[159] Xiao, D. et al. Deep learning enhanced fast fluorescence lifetime imaging with a few photons. Optica 10, 944-951 (2023). doi: 10.1364/OPTICA.491798
[160] Ochoa, M. et al. Deep learning enhanced hyperspectral fluorescence lifetime imaging. bioRxiv. (2020) http://dx.doi.org/10.1101/2020.01.06.896092.
[161] Wang, Q. et al. Deep learning-based virtual H& E staining from label-free autofluorescence lifetime images. npj Imaging 2, 17 (2024). doi: 10.1038/s44303-024-00021-7
[162] Rivenson, Y. et al. PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning. Light: Science & Applications 8, 23 (2019).
[163] Borhani, N. et al. Digital staining through the application of deep neural networks to multi-modal multi-photon microscopy. Biomedical Optics Express 10, 1339-1350 (2019). doi: 10.1364/BOE.10.001339
[164] Li, J. X. et al. Biopsy-free in vivo virtual histology of skin using deep learning. Light: Science & Applications 10, 233 (2021).
[165] Cao, R. et al. Label-free intraoperative histology of bone tissue via deep-learning-assisted ultraviolet photoacoustic microscopy. Nature Biomedical Engineering 7, 124-134 (2023).
[166] Yang, Y. W. et al. Deep learning model utilizing fluorescence lifetime imaging microscopy and confidence learning for predicting endometrial cancer risk. Optics & Laser Technology 181, 111620 (2025).
[167] Mumuni, A. & Mumuni, F. Data augmentation: a comprehensive survey of modern approaches. Array 16, 100258 (2022). doi: 10.1016/j.array.2022.100258
[168] Patil, D. et al. Trustworthy Artificial Intelligence in Industry and Society. (Deep Science Publishing, 2024) . 10.70593/978-81-981367-4-9_1.
[169] Zhang, H. et al. High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network. Biomedical Optics Express 10, 1044-1063 (2019). doi: 10.1364/BOE.10.001044
[170] Wang, S. et al. Towards next-generation diagnostic pathology: AI-empowered label-free multiphoton microscopy. Light: Science & Applications 13, 254 (2024).
[171] Zeinali, M. et al. High-throughput label-free isolation of heterogeneous circulating tumor cells and CTC clusters from non-small-cell lung cancer patients. Cancers 12, 127 (2020). doi: 10.3390/cancers12010127
[172] Walsh, A. J. et al. Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer. Cancer Research 73, 6164-6174 (2013). doi: 10.1158/0008-5472.CAN-13-0527
[173] Boissonnas, A. et al. In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. The Journal of Experimental Medicine 204, 345-356 (2007).
[174] Brown, E. B. et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nature Medicine 7, 864-868 (2001).
[175] Zhang, Q. H. et al. Redox sensor CtBP mediates hypoxia-induced tumor cell migration. Proceedings of the National Academy of Sciences of the United States of America 103, 9029-9033 (2006).
[176] Brodwolf, R. et al. Faster, sharper, more precise: Automated Cluster-FLIM in preclinical testing directly identifies the intracellular fate of theranostics in live cells and tissue. Theranostics 10, 6322-6336 (2020). doi: 10.7150/thno.42581
[177] Karrobi, K. et al. Fluorescence Lifetime Imaging Microscopy (FLIM) reveals spatial-metabolic changes in 3D breast cancer spheroids. Scientific Reports 13, 3624 (2023). doi: 10.1038/s41598-023-30403-7
[178] Pal, R. et al. First clinical results of fluorescence lifetime-enhanced tumor imaging using receptor-targeted fluorescent probes. Clinical Cancer Research 28, 2373-2384 (2022). doi: 10.1158/1078-0432.CCR-21-3429
[179] Carriero, A. et al. Deep learning in breast cancer imaging: state of the art and recent advancements in early 2024. Diagnostics 14, 848 (2024). doi: 10.3390/diagnostics14080848
[180] Unger, J. et al. Real-time diagnosis and visualization of tumor margins in excised breast specimens using fluorescence lifetime imaging and machine learning. Biomedical Optics Express 11, 1216-1230 (2020). doi: 10.1364/BOE.381358
[181] Wang, Q. , Vallejo, M. & Hopgood, J. R. Fluorescence lifetime endomicroscopic image-based ex-vivo human lung cancer differentiation using machine learning. Authorea. (2023) http://dx.doi.org/10.36227/techrxiv.11535708.
[182] Wang, S. Q. et al. Investigating tunneling nanotubes in ovarian cancer based on two-photon excitation FLIM-FRET. Biomedical Optics Express 12, 1962-1973 (2021). doi: 10.1364/BOE.418778
[183] Pastore, A. et al. NAPH-fluorescence lifetime imaging informed machine learning modelling reliably predicts temozolomide responsiveness in glioblastoma. Research Square. (2024) http://dx.doi.org/10.21203/rs.3.rs-4045352/v1.
[184] Lukina, M. et al. Label-free macroscopic fluorescence lifetime imaging of brain tumors. Frontiers in Oncology 11, 666059 (2021). doi: 10.3389/fonc.2021.666059
[185] Xue, J. P. et al. Identifying metastatic ability of prostate cancer cell lines using native fluorescence spectroscopy and machine learning methods. Scientific Reports 11, 2282 (2021). doi: 10.1038/s41598-021-81945-7
[186] Xiao, D., Chen, Y. & Li, D. D. U. One-dimensional deep learning architecture for fast fluorescence lifetime imaging. IEEE Journal of Selected Topics in Quantum Electronics 27, 7000210 (2021).
[187] Yang, Q. Q. et al. Classification of skin cancer based on fluorescence lifetime imaging and machine learning. Proceedings of Optics in Health Care and Biomedical Optics X. SPIE, 2020, 115531Y. https://doi.org/10.1117/12.2573851.
[188] Ji, M. M. et al. Early detection of cervical cancer by fluorescence lifetime imaging microscopy combined with unsupervised machine learning. International Journal of Molecular Sciences 23, 11476 (2022). doi: 10.3390/ijms231911476
[189] Lagarto, J. L. et al. Identification of colorectal malignancies enabled by phasor-based autofluorescence lifetime macroimaging and ensemble learning. medRxiv. (2024) http://dx.doi.org/10.1101/2024.12.04.24317691.
[190] Komarova, A. D. et al. Metabolic heterogeneity of colorectal cancer as a prognostic factor: insights gained from fluorescence lifetime imaging. eLife. (2024) http://dx.doi.org/10.7554/eLife.94438.2.
[191] Chen, Y. E. & Periasamy, A. Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization. Microscopy Research and Technique 63, 72-80 (2004). doi: 10.1002/jemt.10430
[192] Mustafa, M. A. et al. Detection of ovarian cancer using improved deep learning model. Proceedings of the 5th International Conference on Applied Technologies on International Conference on Applied Technologies. Samborondon, Ecuador: Springer, 2023, 77-93.