[1] Maluf, N. & Williams, K. Introduction to Microelectromechanical Systems Engineering. 2nd edn. (Boston: Artech House, 2004).
[2] Longo, G. et al. Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors. Nature Nanotechnology 8, 522-526 (2013). doi: 10.1038/nnano.2013.120
[3] Ndieyira, J. W. et al. Surface-stress sensors for rapid and ultrasensitive detection of active free drugs in human serum. Nature Nanotechnology 9, 225-232 (2014). doi: 10.1038/nnano.2014.33
[4] Mader, A. et al. Discrimination of Escherichia coli strains using glycan cantilever array sensors. Nano Letters 12, 420-423 (2012). doi: 10.1021/nl203736u
[5] Zhou, J. T. et al. Gap-plasmon-enhanced high-spatial-resolution imaging by photothermal-induced resonance in the visible range. Nano Letters 19, 8278-8286 (2019). doi: 10.1021/acs.nanolett.9b03844
[6] Pooser, R. C. et al. Ultrasensitive measurement of microcantilever displacement below the shot-noise limit. Optica 2, 393-399 (2015). doi: 10.1364/OPTICA.2.000393
[7] Chan, B. D. et al. On-demand weighing of single dry biological particles over a 5-order-of-magnitude dynamic range. Lab on a Chip 14, 4188-4196 (2014). doi: 10.1039/C4LC00765D
[8] Mertens, J., Cuervo, A. & Carrascosa, J. L. Nanomechanical detection of Escherichia coli infection by bacteriophage T7 using cantilever sensors. Nanoscale 11, 17689-17698 (2019). doi: 10.1039/C9NR05240B
[9] Gissibl, T. et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nature Photonics 10, 554-560 (2016). doi: 10.1038/nphoton.2016.121
[10] Gissibl, T. et al. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nature Communications 7, 11763 (2016). doi: 10.1038/ncomms11763
[11] Gissibl, T., Schmid, M. & Giessen, H. Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing. Optica 3, 448-451 (2016). doi: 10.1364/OPTICA.3.000448
[12] Zhang, S. Y. et al. High-Q polymer microcavities integrated on a multicore fiber facet for vapor sensing. Advanced Optical Materials 7, 1900602 (2019). doi: 10.1002/adom.201900602
[13] Yu, R. W. et al. Robust mode matching between structurally dissimilar optical fiber waveguides. ACS Photonics 8, 857-863 (2021). doi: 10.1021/acsphotonics.0c01859
[14] Chiavaioli, F. et al. Femtomolar detection by nanocoated fiber label-free biosensors. ACS Sensors 3, 936-943 (2018). doi: 10.1021/acssensors.7b00918
[15] Esposito, F. et al. Long period grating in double cladding fiber coated with graphene oxide as high-performance optical platform for biosensing. Biosensors and Bioelectronics 172, 112747 (2021). doi: 10.1016/j.bios.2020.112747
[16] Chiavaioli, F. & Janner, D. Fiber optic sensing with lossy mode resonances: applications and perspectives. Journal of Lightwave Technology 39, 3855-3870 (2021). doi: 10.1109/JLT.2021.3052137
[17] Moro, G. et al. (INVITED)nanocoated fiber label-free biosensing for perfluorooctanoic acid detection by lossy mode resonance. Results in Optics 5, 100123 (2021). doi: 10.1016/j.rio.2021.100123
[18] Zubiate, P. et al. Fiber-based early diagnosis of venous thromboembolic disease by label-free D-dimer detection. Biosensors and Bioelectronics: X 2, 100026 (2019). doi: 10.1016/j.biosx.2019.100026
[19] Li, J. et al. A miniaturized ferrule-top optical cantilever for vibration measurement. Proceedings of SPIE 10323, 25th International Conference on Optical Fiber Sensors. Jeju: SPIE, 2017.
[20] Li, J. et al. Fabricating optical fibre-top cantilevers for temperature sensing. Measurement Science and Technology 25, 035206 (2014). doi: 10.1088/0957-0233/25/3/035206
[21] Li, J. et al. A micro-machined optical fiber cantilever as a miniaturized pH sensor. IEEE Sensors Journal 15, 7221-7228 (2015). doi: 10.1109/JSEN.2015.2472971
[22] Liu, J. et al. Micro-cantilever-based fiber optic hydrophone fabricated by a femtosecond laser. Optics Letters 42, 2459-2462 (2017). doi: 10.1364/OL.42.002459
[23] Tian, Y. et al. High performance magnetically controllable microturbines. Lab on a Chip 10, 2902-2905 (2010). doi: 10.1039/c005277a
[24] Power, M. et al. A monolithic force-sensitive 3D microgripper fabricated on the tip of an optical fiber using 2-photon polymerization. Small 14, 1703964 (2018). doi: 10.1002/smll.201703964
[25] Dietrich, P. I. et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration. Nature Photonics 12, 241-247 (2018). doi: 10.1038/s41566-018-0133-4
[26] Alsharif, N. et al. Design and realization of 3D printed AFM probes. Small 14, 1800162 (2018). doi: 10.1002/smll.201800162
[27] Dietrich, P. I. et al. 3D-printed scanning-probe microscopes with integrated optical actuation and read-out. Small 16, 1904695 (2020). doi: 10.1002/smll.201904695
[28] Kawata, S. et al. Finer features for functional microdevices. Nature 412, 697-698 (2001). doi: 10.1038/35089130
[29] Serbin, J. et al. Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics. Optics Letters 28, 301-303 (2003). doi: 10.1364/OL.28.000301
[30] Ovsianikov, A. et al. Two photon polymerization of polymer-ceramic hybrid materials for transdermal drug delivery. Journal of the American Ceramic Society 4, 22-29 (2007).
[31] Xiong, C. et al. Fiber-tip polymer microcantilever for fast and highly sensitive hydrogen measurement. ACS Applied Materials & Interfaces 12, 33163-33172 (2020).
[32] Ma, J. et al. High-sensitivity and fast-response fiber-tip Fabry-PȦrot hydrogen sensor with suspended palladium-decorated graphene. Nanoscale 11, 15821-15827 (2019). doi: 10.1039/C9NR04274A
[33] Dong, A. L. et al. Protective effects of hydrogen gas against sepsis-induced acute lung injury via regulation of mitochondrial function and dynamics. International Immunopharmacology 65, 366-372 (2018). doi: 10.1016/j.intimp.2018.10.012
[34] Shimada, S. et al. Hydrogen gas ameliorates hepatic reperfusion injury after prolonged cold preservation in isolated perfused rat liver. Artificial Organs 40, 1128-1136 (2016). doi: 10.1111/aor.12710
[35] Ohsawa, I. et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nature Medicine 13, 688-694 (2007). doi: 10.1038/nm1577
[36] Griessen, R., Strohfeldt, N. & Giessen, H. Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles. Nature Materials 15, 311-317 (2016). doi: 10.1038/nmat4480
[37] Narayan, T. C. et al. Reconstructing solute-induced phase transformations within individual nanocrystals. Nature Materials 15, 768-774 (2016). doi: 10.1038/nmat4620
[38] Liang, W. Q. & Hughes, R. The effect of diffusion direction on the permeation rate of hydrogen in palladium composite membranes. Chemical Engineering Journal 112, 81-86 (2005). doi: 10.1016/j.cej.2005.06.010
[39] Sun Y. & Wang, H. H. High-performance, flexible hydrogen sensors that use carbon nanotubes decorated with palladium nanoparticles. Advanced Materials 19, 2818-2823 (2007). doi: 10.1002/adma.200602975
[40] Wojtas, J. et al. Ultrasensitive laser spectroscopy for breath analysis. Opto-Electronics Review 20, 26-29 (2012).
[41] Kano, S., Kim, K. & Fujii, M. Fast-response and flexible nanocrystal-based humidity sensor for monitoring human respiration and water evaporation on skin. ACS Sensors 2, 828-833 (2017). doi: 10.1021/acssensors.7b00199
[42] Borini, S. et al. Ultrafast graphene oxide humidity sensors. Acs Nano 7, 11166-11173 (2013). doi: 10.1021/nn404889b
[43] Yi, Y. T. et al. High-performance ultrafast humidity sensor based on microknot resonator-assisted Mach-Zehnder for monitoring human breath. ACS Sensors 5, 3404-3410 (2020). doi: 10.1021/acssensors.0c00863
[44] Butt, H. J. & Jaschke, M. Calculation of thermal noise in atomic force microscopy. Nanotechnology 6, 1-7 (1995). doi: 10.1088/0957-4484/6/1/001
[45] Galluzzi, M. et al. Space-resolved quantitative mechanical measurements of soft and supersoft materials by atomic force microscopy. NPG Asia Materials 8, e327 (2016). doi: 10.1038/am.2016.170
[46] Sneddon, I. N. The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science 3, 47-57 (1965). doi: 10.1016/0020-7225(65)90019-4
[47] Bilodeau, G. G. Regular pyramid punch problem. Journal of Applied Mechanics 59, 519-523 (1992). doi: 10.1115/1.2893754