[1] Castellano JA. Handbook of Display Technology. Amsterdam, The Netherlands: Elsevier. 2012.
[2] Chigrinov VG. Liquid Crystal Devices: Physics and Applications. Boston, MA, USA: Artech House. 1999.
[3] Schadt M. Milestone in the history of field-effect liquid crystal displays and materials. Jpn J Appl Phys 2009; 48: 03B001. doi: 10.1143/JJAP.48.03B001
[4] Yeh P, Gu C. Optics of Liquid Crystal Displays. New York, USA: John Wiley & Sons. 2010.
[5] Yang DK, Wu ST. Fundamentals of Liquid Crystal Devices. 2nd edn. New York, USA: John Wiley & Sons. 2014.
[6] Geffroy B, Le Roy P, Prat C. Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym Int 2006; 55: 572–582. doi: 10.1002/pi.1974
[7] Buckley A. Organic Light-Emitting Diodes (OLEDs): Materials, Devices and Applications. Amsterdam, The Netherlands: Elsevier. 2013.
[8] Tsujimura T. OLED Display: Fundamentals and Applications 2nd edn.Hoboken, NJ, USA: John Wiley & Sons. 2017.
[9] Barnes D. LCD or OLED: who wins? SID Symp Dig Tech Pap 2013; 44: 26–27. doi: 10.1002/j.2168-0159.2013.tb06130.x
[10] Heilmeier GH, Zanoni LA, Barton LA. Dynamic scattering: A new electrooptic effect in certain classes of nematic liquid crystals. Proc IEEE 1968; 56: 1162–1171. doi: 10.1109/PROC.1968.6513
[11] Heilmeier GH, Zanoni LA, Barton LA. Dynamic scattering in nematic liquid crystals. Appl Phys Lett 1968; 13: 46–47. doi: 10.1063/1.1652453
[12] Heilmeier GH, Zanoni LA, Barton LA. Further studies of the dynamic scattering mode in nematic liquid crystals. IEEE Trans Electron Dev 1970; 17: 22–26. doi: 10.1109/T-ED.1970.16918
[13] Schadt M, Helfrich W. Voltage-dependent optical activity of a twisted nematic liquid crystal. Appl Phys Lett 1971; 18: 127–128. doi: 10.1063/1.1653593
[14] Schiekel MF, Fahrenschon K. Deformation of nematic liquid crystals with vertical orientation in electrical fields. Appl Phys Lett 1971; 19: 391–393. doi: 10.1063/1.1653743
[15] Soref RA. Transverse field effects in nematic liquid crystals. Appl Phys Lett 1973; 22: 165–166. doi: 10.1063/1.1654597
[16] Lee JH, Liu DN, Wu ST. Introduction to Flat Panel Displays. Chichester, UK: John Wiley & Sons. 2008.
[17] Chen J, Hardev V, Hartlove J, Hofler J, Lee E. A high-efficiency wide-color-gamut solid-state backlight system for LCDs using quantum dot enhancement film. SID Symp Dig Tech Pap 2012; 43: 895–896. doi: 10.1002/j.2168-0159.2012.tb05931.x
[18] Bourzac K. Quantum dots go on display: adoption by TV makers could expand the market for light-emitting nanocrystals. Nature 2013; 493: 283. doi: 10.1038/493283a
[19] Luo ZY, Chen Y, Wu ST. Wide color gamut LCD with a quantum dot backlight. Opt Express 2013; 21: 26269–26284. doi: 10.1364/OE.21.026269
[20] Chen HW, He J, Wu ST. Recent advances on quantum-dot-enhanced liquid-crystal displays. IEEE J Sel Top Quantum Electron 2017; 23: 1900611.
[21] Lee SH, Lee SL, Kim HY. Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching. Appl Phys Lett 1998; 73: 2881–2883. doi: 10.1063/1.122617
[22] Schadt M, Seiberle H, Schuster A. Optical patterning of multi-domain liquid-crystal displays with wide viewing angles. Nature 1996; 381: 212–215. doi: 10.1038/381212a0
[23] Mori H, Itoh Y, Nishiura Y, Nakamura T, Shinagawa Y. Performance of a novel optical compensation film based on negative birefringence of discotic compound for wide-viewing-angle twisted-nematic liquid-crystal displays. Jpn J Appl Phys 1997; 36: 143–147. doi: 10.1143/JJAP.36.143
[24] Ito Y, Watanabe J, Saitoh Y, Takada K, Morishima SI et al. Innovation of optical films using polymerized discotic materials: past, present and future. SID Symp Dig Tech Pap 2013; 44: 526–529. doi: 10.1002/j.2168-0159.2013.tb06261.x
[25] Yamamoto E, Yui H, Katsuta S, Asaoka Y, Maeda T et al. Wide viewing LCDs using novel microstructure film. SID Symp Dig Tech Pap 2014; 45: 385–388. doi: 10.1002/j.2168-0159.2014.tb00104.x
[26] Ohmuro K, Kataoka S, Sasaki T, Koike Y. Development of super-high-image-quality vertical-alignment-mode LCDs. SID Symp Dig Tech Pap 1997; 28: 845–850.
[27] Takeda A, Kataoka S, Sasaki T, Chida H, Tsuda H et al. A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology. SID Symp Dig Tech Pap 1998; 29: 1077–1080. doi: 10.1889/1.1833672
[28] Kim KH, Lee K, Park SB, Song JK, Kim SN et al. Domain Divided Vertical Alignment Mode with Optimized Fringe Field Effect. Proceedings of the 18th IDRC, Asia Display 1998; 98: 383–386.
[29] Lee SH, Kim SM, Wu ST. Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer. J Soc Inf Display 2009; 17: 551–559. doi: 10.1889/JSID17.7.551
[30] Kim SS, You BH, Cho JH, Kim DG, Berkeley BH et al. An 82-in. ultra-definition 120-Hz LCD TV using new driving scheme and advanced Super PVA technology. J Soc Inf Display 2009; 17: 71–78. doi: 10.1889/JSID17.2.71
[31] Vepakomma KH, Ishikawa T, Greene RG. Stress induced substrate Mura in curved LCD. SID Symp Dig Tech Pap 2015; 46: 634–636. doi: 10.1002/sdtp.10230
[32] Hsiao K, Tang GF, Yu G, Zhang ZW, Xu XJ et al. Development and analysis of technical challenges in the world's largest (110-in.) curved LCD. SID Symp Dig Tech Pap 2015; 46: 1059–1062.
[33] Oh-e M, Kondo K. Electro-optical characteristics and switching behavior of the in-plane switching mode. Appl Phys Lett 1995; 67: 3895–3897. doi: 10.1063/1.115309
[34] Oh-e M, Kondo K. Response mechanism of nematic liquid crystals using the in-plane switching mode. Appl Phys Lett 1996; 69: 623–625. doi: 10.1063/1.117927
[35] Hong SH, Park IC, Kim HY, Lee SH. Electro-optic characteristic of fringe-field switching mode depending on rubbing direction. Jpn J Appl Phys 2000; 39: L527–L530. doi: 10.1143/JJAP.39.L527
[36] Yu IH, Song IS, Lee JY, Lee SH. Intensifying the density of a horizontal electric field to improve light efficiency in a fringe-field switching liquid crystal display. J Phys D Appl Phys 2006; 39: 2367–2372. doi: 10.1088/0022-3727/39/11/009
[37] Chen HW, Peng FL, Luo ZY, Xu DM, Wu ST et al. High performance liquid crystal displays with a low dielectric constant material. Opt Mater Express 2014; 4: 2262–2273. doi: 10.1364/OME.4.002262
[38] Yun HJ, Jo MH, Jang IW, Lee SH, Ahn SH et al. Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy. Liq Cryst 2012; 39: 1141–1148. doi: 10.1080/02678292.2012.700078
[39] Chen HW, Gao YT, Wu ST. n-FFS vs. p-FFS: who wins? SID Symp Dig Tech Pap 2015; 46: 735–738.
[40] Chen Y, Luo ZY, Peng FL, Wu ST. Fringe-field switching with a negative dielectric anisotropy liquid crystal. J Display Technol 2013; 9: 74–77. doi: 10.1109/JDT.2013.2242844
[41] Tang CW, VanSlyke SA. Organic electroluminescent diodes. Appl Phys Lett 1987; 51: 913–915. doi: 10.1063/1.98799
[42] Brütting W, Berleb S, Mückl AG. Device physics of organic light-emitting diodes based on molecular materials. Org Electron 2001; 2: 1–36. doi: 10.1016/S1566-1199(01)00009-X
[43] Pfeiffer M, Leo K, Zhou X, Huang JS, Hofmann M et al. Doped organic semiconductors: physics and application in light emitting diodes. Org Electron 2003; 4: 89–103. doi: 10.1016/j.orgel.2003.08.004
[44] Kondakov DY. Characterization of triplet-triplet annihilation in organic light-emitting diodes based on anthracene derivatives. J Appl Phys 2007; 102: 114504. doi: 10.1063/1.2818362
[45] Baldo MA, Lamansky S, Burrows PE, Thompson ME, Forrest SR. Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl Phys Lett 1999; 75: 4–6. doi: 10.1063/1.124258
[46] Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012; 492: 234–238. doi: 10.1038/nature11687
[47] Park YS, Lee S, Kim KH, Kim SY, Lee JH et al. Exciplex-forming co-host for organic light-emitting diodes with ultimate efficiency. Adv Funct Mater 2013; 23: 4914–4920. doi: 10.1002/adfm.201300547
[48] Song DD, Zhao SL, Luo YC, Aziz H. Causes of efficiency roll-off in phosphorescent organic light emitting devices: triplet-triplet annihilation versus triplet-polaron quenching. Appl Phys Lett 2010; 97: 243304. doi: 10.1063/1.3527085
[49] Giebink N, D'Andrade BW, Weaver MS, Brown JJ, Forrest SR. Direct evidence for degradation of polaron excited states in organic light emitting diodes. J Appl Phys 2009; 105: 124514. doi: 10.1063/1.3151689
[50] Seino Y, Sasabe H, Pu YJ, Kido J. High-performance blue phosphorescent OLEDs using energy transfer from exciplex. Adv Mater 2014; 26: 1612–1616. doi: 10.1002/adma.201304253
[51] Kuma H, Hosokawa C. Blue fluorescent OLED materials and their application for high-performance devices. Sci Technol Adv Mater 2014; 15: 034201. doi: 10.1088/1468-6996/15/3/034201
[52] Liang HW, Luo ZY, Zhu RD, Dong YJ, Lee JH et al. High efficiency quantum dot and organic LEDs with a back-cavity and a high index substrate. J Phys D Appl Phys 2016; 49: 145103. doi: 10.1088/0022-3727/49/14/145103
[53] Yamamoto T, Aono Y, Tsumura M. Guiding principles for high quality motion picture in AMLCDs applicable to TV monitors. SID Symp Dig Tech Pap 2000; 31: 456–459. doi: 10.1889/1.1832979
[54] Kurita T. Moving picture quality improvement for hold-type AM-LCDs. SID Symp Dig Tech Pap 2001; 32: 986–989. doi: 10.1889/1.1832037
[55] Igarashi Y, Yamamoto T, Tanaka Y, Someya J, Nakakura Y et al. Summary of moving picture response time (MPRT) and futures. SID Symp Dig Tech Pap 2004; 35: 1262–1265. doi: 10.1889/1.1821340
[56] Someya J, Sugiura H. Evaluation of liquid-crystal-display motion blur with moving-picture response time and human perception. J Soc Inf Display 2007; 15: 79–86. doi: 10.1889/1.2451570
[57] Peng FL, Chen HW, Gou FW, Lee YH, Wand M et al. Analytical equation for the motion picture response time of display devices. J Appl Phys 2017; 121: 023108. doi: 10.1063/1.4974006
[58] Chen HW, Peng FL, Gou FW, Lee YH, Wand M et al. Nematic LCD with motion picture response time comparable to organic LEDs. Optica 2016; 3: 1033–1034. doi: 10.1364/OPTICA.3.001033
[59] Hirakata JI, Shingai A, Tanaka Y, Ono K, Furuhashi T. Super-TFT-LCD for moving picture images with the blink backlight system. SID Symp Dig Tech Pap 2001; 32: 990–993. doi: 10.1889/1.1832039
[60] Furuhashi T, Kawabe K, Hirakata JI, Tanaka Y, Sato T. High quality TFT-LCD system for moving picture. SID Symp Dig Tech Pap 2002; 33: 1284–1287. doi: 10.1889/1.1830181
[61] Yamamoto T, Sasaki S, Igarashi Y, Tanaka Y. Guiding principles for high-quality moving picture in LCD TVs. J Soc Inf Display 2006; 14: 933–940. doi: 10.1889/1.2372428
[62] Ito H, Ogawa M, Sunaga S. Evaluation of an organic light-emitting diode display for precise visual stimulation. J Vis 2013; 13: 6. doi: 10.1167/13.7.6
[63] Murawski C, Leo K, Gather MC. Efficiency roll-off in organic light-emitting diodes. Adv Mater 2013; 25: 6801–6827. doi: 10.1002/adma.201301603
[64] Féry C, Racine B, Vaufrey D, Doyeux H, Cinà S. Physical mechanism responsible for the stretched exponential decay behavior of aging organic light-emitting diodes. Appl Phys Lett 2005; 87: 213502. doi: 10.1063/1.2133922
[65] Lee JH, Zhu XY, Lin YH, Choi WK, Lin TC et al. High ambient-contrast-ratio display using tandem reflective liquid crystal display and organic light-emitting device. Opt Express 2005; 13: 9431–9438. doi: 10.1364/OPEX.13.009431
[66] Ge ZB, Wu ST. Transflective Liquid Crystal Displays. Chichester, UK: John Wiley & Sons. 2010.
[67] Walker G. GD-Itronix Dynavue Technology. The ultimate outdoor-readable touch-screen display. Rugged PC Rev 2007. Available at: http://www.ruggedpcreview.com/3_technology_itronix_dynavue.html.
[68] Zhu RD, Chen HW, Kosa T, Coutino P, Tan GJ et al. High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer. J Soc Inf Display 2016; 24: 229–233. doi: 10.1002/jsid.427
[69] Chen HW, Tan GJ, Li MC, Lee SL, Wu ST. Depolarization effect in liquid crystal displays. Opt Express 2017; 25: 11315–11328. doi: 10.1364/OE.25.011315
[70] Mills PR, Tomkins SC, Schlangen LJ. The effect of high correlated colour temperature office lighting on employee wellbeing and work performance. J Circadian Rhythms 2007; 5: 2. doi: 10.1186/1740-3391-5-2
[71] Lee JH, Park KH, Kim SH, Choi HC, Kim BK et al. AH-IPS, superb display for mobile device. SID Symp Dig Tech Pap 2013; 44: 32–33. doi: 10.1002/j.2168-0159.2013.tb06132.x
[72] Chen HW, Zhu RD, He J, Duan W, Hu W et al. Going beyond the limit of an LCD's color gamut. Light Sci Appl 2017; 6: e17043. doi: 10.1038/lsa.2017.43
[73] ITU. Parameter Values for the HDTV Standards for Production and International Programme Exchange. Geneva, Switzerland: ITU. 2002 ITU-R Recommendation BT.709-5.
[74] Adobe Systems Inc. Adobe RGB (1998) Color Image Encoding. San Jose, USA: Adobe Systems Inc.; 2005.
[75] ITU. Parameter Values for Ultra-High Definition Television Systems for Production and International Programme Exchange. Geneva, Switzerland: ITU. 2015.
[76] Masaoka K, Nishida Y, Sugawara M, Nakasu E. Design of primaries for a wide-gamut television colorimetry. IEEE Trans Broadcast 2010; 56: 452–457. doi: 10.1109/TBC.2010.2074450
[77] Kobayashi S, Mikoshiba S, Lim S. LCD Backlights. New York, USA: John Wiley & Sons. 2009.
[78] Xie RJ, Hirosaki N, Takeda T. Wide color gamut backlight for liquid crystal displays using three-band phosphor-converted white light-emitting diodes. Appl Phys Express 2009; 2: 022401. doi: 10.1143/APEX.2.022401
[79] Wang L, Wang XJ, Kohsei T, Yoshimura KI, Izumi M et al. Highly efficient narrow-band green and red phosphors enabling wider color-gamut LED backlight for more brilliant displays. Opt Express 2015; 23: 28707–28717. doi: 10.1364/OE.23.028707
[80] Jang E, Jun S, Jang H, Lim J, Kim B et al. White-light-emitting diodes with quantum dot color converters for display backlights. Adv Mater 2010; 22: 3076–3080. doi: 10.1002/adma.201000525
[81] Steckel JS, Ho J, Hamilton C, Xi JQ, Breen C et al. Quantum dots: the ultimate down-conversion material for LCD displays. J Soc Inf Display 2015; 23: 294–305. doi: 10.1002/jsid.313
[82] The European Parliament, The Council of the European Union Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment. The European Parliament, The Council of the European Union, 2003; pp19–23.
[83] Pickett NL, Harris JA, Gresty NC. Heavy metal-free quantum dots for display applications. SID Symp Dig Tech Pap 2015; 46: 168–169. doi: 10.1002/sdtp.10288
[84] Pickett NL, Gresty NC, Hines MA. Heavy metal-free quantum dots making inroads for consumer applications. SID Symp Dig Tech Pap 2016; 47: 425–427. doi: 10.1002/sdtp.10694
[85] Lee E, Wang CK, Hotz C, Hartlove J, Yurek J et al. 'Greener' quantum-dot enabled LCDs with BT.2020 color gamut. SID Symp Dig Tech Pap 2016; 47: 549–551.
[86] Wyatt D, Chen HW, Wu ST. Wide-color-gamut LCDs with vivid color LED technology. SID Symp Dig Tech Pap 2017; 48: 992–995. doi: 10.1002/sdtp.11793
[87] Li WJ, Yao L, Liu HC, Wang ZM, Zhang ST et al. Highly efficient deep-blue OLED with an extraordinarily narrow FHWM of 35 nm and a y coordinate < 0.05 based on a fully twisting donor-acceptor molecule. J Mater Chem C 2014; 2: 4733–4736. doi: 10.1039/C4TC00487F
[88] Hosoumi S, Yamaguchi T, Inoue H, Nomura S, Yamaoka R et al. Ultra-wide color gamut OLED display?using a deep-red phosphorescent device with high efficiency, long life, thermal stability, and absolute BT.2020 red chromaticity. SID Symp Dig Tech Pap 2017; 48: 13–16. doi: 10.1002/sdtp.11562
[89] Li GJ, Fleetham T, Turner E, Hang XC, Li J. Highly efficient and stable narrow-band phosphorescent emitters for OLED applications. Adv Opt Mater 2015; 3: 390–397. doi: 10.1002/adom.201400341
[90] Riel H, Karg S, Beierlein T, Ruhstaller B, Rieß W. Phosphorescent top-emitting organic light-emitting devices with improved light outcoupling. Appl Phys Lett 2003; 82: 466–468. doi: 10.1063/1.1537052
[91] Kim E, Chung J, Lee J, Cho H, Cho NS et al. A systematic approach to reducing angular color shift in cavity-based organic light-emitting diodes. Org Electron 2017; 48: 348–356. doi: 10.1016/j.orgel.2017.06.030
[92] Lee MT, Wang CL, Chan CS, Fu CC, Shih CY et al. Achieving a foldable and durable OLED display with BT.2020 color space using innovative color filter structure. J Soc Inf Display 2017; 25: 229–239. doi: 10.1002/jsid.533
[93] Sasaki T, Yamaoka R, Nomura S, Yamamoto R, Takahashi K et al. A 13.3-inch 8K × 4K 664-ppi 120-Hz 12-bit display with super-wide color gamut for the BT.2020 standard. SID Symp Dig Tech Pap 2017; 48: 123–126.
[94] Park JS, Chae H, Chung HK, Lee SI. Thin film encapsulation for flexible AM-OLED: a review. Semicond Sci Technol 2011; 26: 034001. doi: 10.1088/0268-1242/26/3/034001
[95] Lewis JS, Weaver MS. Thin-film permeation-barrier technology for flexible organic light-emitting devices. IEEE J Sel Top Quantum Electron 2004; 10: 45–57. doi: 10.1109/JSTQE.2004.824072
[96] Chou CT, Yu PW, Tseng MH, Hsu CC, Shyue JJ et al. Transparent conductive gas-permeation barriers on plastics by atomic layer deposition. Adv Mater 2013; 25: 1750–1754. doi: 10.1002/adma.201204358
[97] Chwang AB, Rothman MA, Mao SY, Hewitt RH, Weaver MS et al. Thin film encapsulated flexible organic electroluminescent displays. Appl Phys Lett 2003; 83: 413–415. doi: 10.1063/1.1594284
[98] Kondakov DY, Sandifer JR, Tang CW, Young RH. Nonradiative recombination centers and electrical aging of organic light-emitting diodes: direct connection between accumulation of trapped charge and luminance loss. J Appl Phys 2003; 93: 1108–1109. doi: 10.1063/1.1531231
[99] Hack M, Weaver MS, Brown JJ. Status and opportunities for phosphorescent OLED lighting. SID Symp Dig Tech Pap 2017; 48: 187–190. doi: 10.1002/sdtp.11620
[100] Scholz S, Kondakov D, Lüssem B, Leo K. Degradation mechanisms and reactions in organic light-emitting devices. Chem Rev 2015; 115: 8449–8503. doi: 10.1021/cr400704v
[101] Zhang Y, Lee J, Forrest SR. Tenfold increase in the lifetime of blue phosphorescent organic light-emitting diodes. Nat Commun 2014; 5: 5008. doi: 10.1038/ncomms6008
[102] Lee J, Jeong C, Batagoda T, Coburn C, Thompson ME et al. Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes. Nat Commun 2017; 8: 15566. doi: 10.1038/ncomms15566
[103] Hashimoto N, Ogita K, Nowatari H, Takita Y, Kido H et al. Investigation of effect of triplet-triplet annihilation and molecular orientation on external quantum efficiency of ultrahigh-efficiency blue fluorescent device. SID Symp Dig Tech Pap 2016; 47: 301–304. doi: 10.1002/sdtp.10654
[104] Lin BY, Lee MZ, Tseng PC, Lee JH, Chiu TL et al. 16.1-times elongation of operation lifetime in a blue TTA-OLED by using new ETL and EML materials. SID Symp Dig Tech Pap 2017; 48: 1928–1931. doi: 10.1002/sdtp.12008
[105] Lin BY, Easley CJ, Chen CH, Tseng PC, Lee MZ et al. Exciplex-sensitized triplet−triplet annihilation in heterojunction organic thin-film. ACS Appl Mater Interfaces 2017; 9: 10963–10970. doi: 10.1021/acsami.6b16397
[106] 3M Optical Systems Division. Vikuiti™ Dual Brightness Enhancement Film (DBEF). St. Paul, USA: 3M. 2008.
[107] Youn W, Lee J, Xu MF, Singh R, So F. Corrugated sapphire substrates for organic light-emitting diode light extraction. ACS Appl Mater Interfaces 2015; 7: 8974–8978. doi: 10.1021/acsami.5b01533
[108] Kim JB, Lee JH, Moon CK, Kim SY, Kim JJ. Highly enhanced light extraction from surface plasmonic loss minimized organic light-emitting diodes. Adv Mater 2013; 25: 3571–3577. doi: 10.1002/adma.201205233
[109] Furno M, Meerheim R, Hofmann S, Lüssem B, Leo K. Efficiency and rate of spontaneous emission in organic electroluminescent devices. Phys Rev B 2012; 85: 115205. doi: 10.1103/PhysRevB.85.115205
[110] Lüssem B, Riede M, Leo K. Doping of organic semiconductors. Phys Status Solidi (A) 2013; 210: 9–43. doi: 10.1002/pssa.201228310
[111] Lee C, Kim JJ. Enhanced light out-coupling of OLEDs with low haze by inserting randomly dispersed nanopillar arrays formed by lateral phase separation of polymer blends. Small 2013; 9: 3858–3863. doi: 10.1002/smll.201300068
[112] Lin HY, Chen KY, Ho YH, Fang JH, Hsu SC et al. Luminance and image quality analysis of an organic electroluminescent panel with a patterned microlens array attachment. J Optics 2010; 12: 085502. doi: 10.1088/2040-8978/12/8/085502
[113] Tan GJ, Zhu RD, Tsai YS, Lee KC, Luo ZY et al. High ambient contrast ratio OLED and QLED without a circular polarizer. J Phys D Appl Phys 2016; 49: 315101. doi: 10.1088/0022-3727/49/31/315101
[114] Tang CW, VanSlyke SA, Chen CH. Electroluminescence of doped organic thin films. J Appl Phys 1989; 65: 3610–3616. doi: 10.1063/1.343409
[115] Shi JM, Tang CW. Doped organic electroluminescent devices with improved stability. Appl Phys Lett 1997; 70: 1665–1667. doi: 10.1063/1.118664
[116] Hosokawa C, Higashi H, Nakamura H, Kusumoto T. Highly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopant. Appl Phys Lett 1995; 67: 3853–3855. doi: 10.1063/1.115295
[117] Kido J, Kimura M, Nagai K. Multilayer white light-emitting organic electroluminescent device. Science 1995; 267: 1332–1334. doi: 10.1126/science.267.5202.1332
[118] Huang YS, Jou JH, Weng WK, Liu JM. High-efficiency white organic light-emitting devices with dual doped structure. Appl Phys Lett 2002; 80: 2782–2784. doi: 10.1063/1.1413220
[119] Adachi C, Baldo M, Forrest SR, Lamansky S, Thompson ME et al. High-efficiency red electrophosphorescence devices. Appl Phys Lett 2001; 78: 1622–1624. doi: 10.1063/1.1355007
[120] Meerheim R, Scholz S, Olthof S, Schwartz G, Reineke S et al. Influence of charge balance and exciton distribution on efficiency and lifetime of phosphorescent organic light-emitting devices. J Appl Phys 2008; 104: 014510. doi: 10.1063/1.2951960
[121] Tanaka D, Sasabe H, Li YJ, Su SJ, Takeda T et al. Ultra high efficiency green organic light-emitting devices. Jpn J Appl Phys 2007; 46: L10–L12. doi: 10.1143/JJAP.46.L10
[122] Holmes RJ, Forrest SR, Tung YJ, Kwong RC, Brown JJ et al. Blue organic electrophosphorescence using exothermic host-guest energy transfer. Appl Phys Lett 2003; 82: 2422–2424. doi: 10.1063/1.1568146
[123] Chopra N, Lee J, Xue JG, So F. High-efficiency blue emitting phosphorescent OLEDs. IEEE Trans Electron Devices 2010; 57: 101–107. doi: 10.1109/TED.2009.2035028
[124] D'Andrade BW, Holmes RJ, Forrest SR. Efficient organic electrophosphorescent white-light-emitting device with a triple doped emissive layer. Adv Mater 2004; 16: 624–628. doi: 10.1002/adma.200306670
[125] Sun YR, Forrest SR. High-efficiency white organic light emitting devices with three separate phosphorescent emission layers. Appl Phys Lett 2007; 91: 263503. doi: 10.1063/1.2827178
[126] Kim KH, Liao JL, Lee SW, Sim B, Moon CK et al. Crystal organic light-emitting diodes with perfectly oriented non-doped Pt-based emitting layer. Adv Mater 2016; 28: 2526–2532. doi: 10.1002/adma.201504451
[127] Wang ZB, Helander MG, Qiu J, Puzzo DP, Greiner MT et al. Unlocking the full potential of organic light-emitting diodes on flexible plastic. Nat Photonics 2011; 5: 753–757. doi: 10.1038/nphoton.2011.259
[128] Shin H, Lee JH, Moon CK, Huh JS, Sim B et al. Sky-blue phosphorescent OLEDs with 34.1% external quantum efficiency using a low refractive index electron transporting layer. Adv Mater 2016; 28: 4920–4925. doi: 10.1002/adma.201506065
[129] Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature 2009; 459: 234–238. doi: 10.1038/nature08003
[130] Yamada Y, Inoue H, Mitsumori S, Watabe T, Ishisone T et al. Achievement of blue phosphorescent organic light-emitting diode with high efficiency, low driving voltage, and long lifetime by exciplex-triplet energy transfer technology. SID Symp Dig Tech Pap 2016; 47: 711–714. doi: 10.1002/sdtp.10782
[131] Wen SW, Lee MT, Chen CH. Recent development of blue fluorescent OLED materials and devices. J Display Technol 2005; 1: 90–99. doi: 10.1109/JDT.2005.852802
[132] Suzuki T, Nonaka Y, Watabe T, Nakashima H, Seo S et al. Highly efficient long-life blue fluorescent organic light-emitting diode exhibiting triplet-triplet annihilation effects enhanced by a novel hole-transporting material. Jpn J Appl Phys 2014; 53: 052102. doi: 10.7567/JJAP.53.052102
[133] Jou JH, Kumar S, Agrawal A, Li TH, Sahoo S. Approaches for fabricating high efficiency organic light emitting diodes. J Mater Chem C 2015; 3: 2974–3002. doi: 10.1039/C4TC02495H
[134] Soneira RM. Galaxy Note8 OLED Display Technology Shoot-Out. Amherst, USA: DisplayMate. 2017.
[135] Jang J. Displays develop a new flexibility. Mater Today 2006; 9: 46–52. doi: 10.1016/S1369-7021(06)71447-X
[136] Komatsu R, Nakazato R, Sasaki T, Suzuki A, Senda N et al. Repeatedly foldable book-type AMOLED display. SID Symp Dig Tech Pap 2014; 45: 326–329. doi: 10.1002/j.2168-0159.2014.tb00088.x
[137] Noda M, Kobayashi N, Katsuhara M, Yumoto A, Ushikura S et al. An OTFT-driven rollable OLED display. J Soc Inf Display 2011; 19: 316–322. doi: 10.1889/JSID19.4.316
[138] Liang JJ, Li L, Niu XF, Yu ZB, Pei QB. Elastomeric polymer light-emitting devices and displays. Nat Photonics 2013; 7: 817–824. doi: 10.1038/nphoton.2013.242
[139] Jo JH, Jhe JH, Ryu SC, Lee KH, Shin JK. A novel curved LCD with highly durable and slim profile. SID Symp Dig Tech Pap 2010; 41: 1671–1674. doi: 10.1889/1.3500227
[140] Vogels JPA, Klink SI, Penterman R, de Koning H, Huitema EEA et al. Robust flexible LCDs with paintable technology. SID Symp Dig Tech Pap 2004; 35: 767–769. doi: 10.1889/1.1825794
[141] Fujisaki Y, Sato H, Yamamoto T, Fujikake H, Tokito S et al. Flexible color LCD panel driven by low-voltage-operation organic TFT. J Soc Inf Display 2007; 15: 501–506. doi: 10.1889/1.2759556
[142] Ishinabe T, Obonai Y, Fujikake H. A foldable ultra-thin LCD using a coat-debond polyimide substrate and polymer walls. SID Symp Dig Tech Pap 2016; 47: 83–86. doi: 10.1002/sdtp.10592
[143] Harding MJ, Horne IP, Yaglioglu B. Flexible LCDs enabled by OTFT. SID Symp Dig Tech Pap 2017; 48: 793–796. doi: 10.1002/sdtp.11754
[144] Greinert N, Schoenefeld C, Suess P, Klasen-Memmer M, Bremer M et al. Opening the door to new LCD applications via polymer walls. SID Symp Dig Tech Pap 2015; 46: 382–385. doi: 10.1002/sdtp.10348
[145] Lee S, Moon J, Yang S, Rhim J, Kim B et al. Development of zero-bezel display utilizing a waveguide image transformation element. SID Symp Dig Tech Pap 2017; 48: 612–614. doi: 10.1002/sdtp.11713
[146] Yamazaki A, Wu CL, Cheng WC, Badano A. Spatial resolution characteristics of organic light-emitting diode displays: a comparative analysis of MTF for handheld and workstation formats. SID Symp Dig Tech Pap 2013; 44: 419–422. doi: 10.1002/j.2168-0159.2013.tb06236.x
[147] Chen HW, Zhu RD, Käläntär K, Wu ST. Quantum dot-enhanced LCDs with wide color gamut and broad angular luminance distribution. SID Symp Dig Tech Pap 2016; 47: 1413–1416. doi: 10.1002/sdtp.10951
[148] Käläntär K. A directional backlight with narrow angular luminance distribution for widening the viewing angle for an LCD with a front-surface light-scattering film. J Soc Inf Display 2012; 20: 133–142. doi: 10.1889/JSID20.3.133
[149] Gao YT, Luo ZY, Zhu RD, Hong Q, Wu ST et al. A high performance single-domain LCD with wide luminance distribution. J Display Technol 2015; 11: 315–324. doi: 10.1109/JDT.2015.2408993
[150] Yang JP, Hsiang EL, Chen HMP. Wide viewing angle TN LCD enhanced by printed quantum-dots film. SID Symp Dig Tech Pap 2016; 47: 21–24. doi: 10.1002/sdtp.10588
[151] Kim HJ, Shin MH, Lee JY, Kim JH, Kim YJ. Realization of 95% of the Rec. 2020 color gamut in a highly efficient LCD using a patterned quantum dot film. Opt Express 2017; 25: 10724–10734. doi: 10.1364/OE.25.010724
[152] Liu YK, Lai J, Li XN, Xiang Y, Li JT et al. A quantum dot array for enhanced tricolor liquid-crystal display. IEEE Photonics Technol 2017; 9: 6900207.
[153] Han CW, Kim KM, Bae SJ, Choi HS, Lee JM et al. 55-inch FHD OLED TV employing new tandem WOLEDs. SID Symp Dig Tech Pap 2012; 43: 279–281. doi: 10.1002/j.2168-0159.2012.tb05768.x
[154] Shin HJ, Park KM, Takasugi S, Jeong YS, Kim JM et al. A high-image-quality OLED display for large-size and premium TVs. SID Symp Dig Tech Pap 2017; 48: 1134–1137. doi: 10.1002/sdtp.11841
[155] Singh M, Haverinen HM, Dhagat P, Jabbour GE. Inkjet printing—process and its applications. Adv Mater 2010; 22: 673–685. doi: 10.1002/adma.200901141
[156] Chen PY, Chen CL, Chen CC, Tsai L, Ting HC et al. 65-inch inkjet printed organic light-emitting display panel with high degree of pixel uniformity. SID Symp Dig Tech Pap 2014; 45: 396–398. doi: 10.1002/j.2168-0159.2014.tb00107.x
[157] Levermore P, Schenk T, Tseng HR, Wang HJ, Heil H et al. Ink-jet-printed OLEDs for display applications. SID Symp Dig Tech Pap 2016; 47: 484–486. doi: 10.1002/sdtp.10714
[158] Reinhard E, Heidrich W, Debevec P, Pattanaik S, Ward G et al. High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting2nd edn.San Francisco, CA, USA: Morgan Kaufmann. 2010.
[159] Kwon JU, Bang S, Kang D, Yoo JJ. The required attribute of displays for high dynamic range. SID Symp Dig Tech Pap 2016; 47: 884–887. doi: 10.1002/sdtp.10829
[160] Zhu RD, Chen HW, Wu ST. Achieving 12-bit perceptual quantizer curve with liquid crystal display. Opt Express 2017; 25: 10939–10946. doi: 10.1364/OE.25.010939
[161] Chen HF, Sung J, Ha T, Park Y, Hong CW. Backlight Local Dimming Algorithm for High Contrast LCD-TV. New Delhi, India: Proceedings of ASID. 2006, pp168–pp171.
[162] Lin FC, Huang YP, Liao LY, Liao CY, Shieh HPD et al. Dynamic backlight gamma on high dynamic range LCD TVs. J Display Technol 2008; 4: 139–146. doi: 10.1109/JDT.2008.920175
[163] Chen HF, Ha TH, Sung JH, Kim HR, Han BH. Evaluation of LCD local-dimming-backlight system. J Soc Inf Display 2010; 18: 57–65. doi: 10.1889/JSID18.1.57
[164] Yoo O, Nam S, Choi J, Yoo S, Kim KJ et al. Contrast enhancement based on advanced local dimming system for high dynamic range LCDs. SID Symp Dig Tech Pap 2017; 48: 1667–1669. doi: 10.1002/sdtp.11966
[165] Chen HW, Zhu RD, Li MC, Lee SL, Wu ST. Pixel-by-pixel local dimming for high-dynamic-range liquid crystal displays. Opt Express 2017; 25: 1973–1984. doi: 10.1364/OE.25.001973
[166] Daly S, Kunkel T, Sun X, Farrell S, Crum P. Viewer preferences for shadow, diffuse, specular, and emissive luminance limits of high dynamic range displays. SID Symp Dig Tech Pap 2013; 44: 563–566. doi: 10.1002/j.2168-0159.2013.tb06271.x
[167] SMPTE. SMPTE ST 2084-2014 High dynamic range electro-optical transfer function of mastering reference displays. SMPTE 2014.
[168] Chen CH, Lin FC, Hsu YT, Huang YP, Shieh HP. A field sequential color LCD based on color fields arrangement for color breakup and flicker reduction. J Display Technol 2009; 5: 34–39. doi: 10.1109/JDT.2008.2001578
[169] Lin FC, Huang YP, Wei CM, Shieh HPD. Color-breakup suppression and low-power consumption by using the Stencil-FSC method in field-sequential LCDs. J Soc Inf Display 2009; 17: 221–228. doi: 10.1889/JSID17.3.221
[170] Chen HW, Hu MG, Peng FL, Li J, An ZW et al. Ultra-low viscosity liquid crystal materials. Opt Mater Express 2015; 5: 655–660. doi: 10.1364/OME.5.000655
[171] Channin DJ. Triode optical gate: a new liquid crystal electro-optic device. Appl Phys Lett 1975; 26: 603–605. doi: 10.1063/1.88018
[172] Xiang CY, Guo JX, Sun XW, Yin XJ, Qi GJ. A fast response, three-electrode liquid crystal device. Jpn J Appl Phys 2003; 42: 763. doi: 10.1143/JJAP.42.L763
[173] Jiao MZ, Ge ZB, Wu ST, Choi WK. Submillisecond response nematic liquid crystal modulators using dual fringe field switching in a vertically aligned cell. Appl Phys Lett 2008; 92: 111101. doi: 10.1063/1.2896650
[174] Chen HW, Luo ZY, Xu DM, Peng FL, Wu ST et al. A fast-response A-film-enhanced fringe field switching liquid crystal display. Liq Cryst 2015; 42: 537–542. doi: 10.1080/02678292.2015.1014873
[175] Chen HW, Gou FW, Wu ST. Submillisecond-response nematic liquid crystals for augmented reality displays. Opt Mater Express 2017; 7: 195–201. doi: 10.1364/OME.7.000195
[176] Huang YG, Chen HW, Tan GJ, Tobata H, Yamamoto SI et al. Optimized blue-phase liquid crystal for field-sequential-color displays. Opt Mater Express 2017; 7: 641–650. doi: 10.1364/OME.7.000641
[177] Chen HW, Lan YF, Tsai CY, Wu ST. Low-voltage blue-phase liquid crystal display with diamond-shape electrodes. Liq Cryst 2017; 44: 1124–1130. doi: 10.1080/02678292.2016.1264014
[178] Tan GJ, Lee YH, Gou FW, Hu MG, Lan YF et al. Macroscopic model for analyzing the electro-optics of uniform lying helix cholesteric liquid crystals. J Appl Phys 2017; 121: 173102. doi: 10.1063/1.4982761
[179] Castles F, Morris SM, Gardiner DJ, Malik QM, Coles HJ. Ultra-fast-switching flexoelectric liquid-crystal display with high contrast. J Soc Inf Display 2010; 18: 128–133. doi: 10.1889/JSID18.2.128
[180] Ghosh A, Donoghue EP, Khayrullin I, Ali T, Wacyk I et al. Directly patterened 2645 Ppi full color OLED microdisplay for head mounted wearables. SID Symp Dig Tech Pap 2016; 47: 837–840. doi: 10.1002/sdtp.10805
[181] Kimura K, Onoyama Y, Tanaka T, Toyomura N, Kitagawa H. New pixel driving circuit using self-discharging compensation method for high- resolution OLED micro displays on a silicon backplane. J Soc Inf Display 2017; 25: 167–176. doi: 10.1002/jsid.540
[182] Armitage D, Underwood I, Wu ST. Introduction to Microdisplays. Chichester, UK: John Wiley & Sons. 2006.
[183] Li YW, Lin CW, Chen KY, Fan-Chiang KH, Kuo HC et al. Front-lit LCOS for wearable applications. SID Symp Dig Tech Pap 2014; 45: 234–236. doi: 10.1002/j.2168-0159.2014.tb00064.x
[184] Reinert-Weiss CJ, Baur H, Al Nusayer SA, Duhme D, Frühauf N. Development of active matrix LCD for use in high-resolution adaptive headlights. J Soc Inf Display 2017; 25: 90–97. doi: 10.1002/jsid.534
[185] Yao L, Langguth N, Schroth D, Maisch R. Driving forces-how mobility of tomorrow influences technologies of today. SID Symp Dig Tech Pap 2017; 48: 775–778. doi: 10.1002/sdtp.11745
[186] Lin CH, Lo WB, Liu KH, Liu CY, Lu JK et al. Novel transparent LCD with tunable transparency. SID Symp Dig Tech Pap 2012; 43: 1159–1162. doi: 10.1002/j.2168-0159.2012.tb06001.x
[187] Okuyama K, Nakahara T, Numata Y, Nakamura T, Mizuno M et al. Highly transparent LCD using new scattering-type liquid crystal with field sequential color edge light. SID Symp Dig Tech Pap 2017; 48: 1166–1169. doi: 10.1002/sdtp.11851
[188] Görrn P, Sander M, Meyer J, Kröger M, Becker E et al. Towards see-through displays: fully transparent thin-film transistors driving transparent organic light-emitting diodes. Adv Mater 2006; 18: 738–741. doi: 10.1002/adma.200501957
[189] Wang MJ, Chen YQ, Liu XN, Yuan S, Li N et al. A new technology of mirror LCD. SID Symp Dig Tech Pap 2017; 48: 1160–1162. doi: 10.1002/sdtp.11849