[1] Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG et al. Optical coherence tomography. Science 1991; 254: 1178–81. doi: 10.1126/science.1957169
[2] Adler DC, Chen Y, Huber R, Schmitt J, Connolly J et al. Three-dimensional endomicroscopy using optical coherence tomography. Nat Photonics 2007; 1: 709–16. doi: 10.1038/nphoton.2007.228
[3] Greenwood PDL, Childs DTD, Kennedy K, Groom KM, Hugues M et al. Quantum dot superluminescent diodes for optical coherence tomography: device engineering. IEEE J Sel Top Quantum Electron 2010; 16: 1015–22. doi: 10.1109/JSTQE.2009.2038720
[4] Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P et al. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature 2005; 438: 343–6. doi: 10.1038/nature04275
[5] Fujimoto JG, Pitris C, Boppart SA, Brezinski ME. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2000; 2: 9–25. doi: 10.1038/sj.neo.7900071
[6] Fujimoto JG. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol 2003; 21: 1361–7. doi: 10.1038/nbt892
[7] Ozaki N, Childs DTD, Sarma J, Roberts TS, Yasuda T et al. Superluminescent diode with a broadband gain based on self-assembled InAs quantum dots and segmented contacts for an optical coherence tomography light source. J Appl Phys 2016; 119: 083107. doi: 10.1063/1.4942640
[8] Zhang ZY, Hogg RA, Lv XQ, Wang ZG. Self-assembled quantum-dot superluminescent light-emitting diodes. Adv Opt Photonics 2010; 2: 201–28. doi: 10.1364/AOP.2.000201
[9] Drexler W. Ultrahigh-resolution optical coherence tomography. J Biomed Opt 2004; 9: 47–74. doi: 10.1117/1.1629679
[10] Ko TH, Adler DC, Fujimoto JG, Mamedov D, Prokhorov V et al. Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source. Opt Express 2004; 12: 2112–9. doi: 10.1364/OPEX.12.002112
[11] Barth A. Infrared spectroscopy of proteins. Biochim Biophys Acta 2007; 1767: 1073–101. doi: 10.1016/j.bbabio.2007.06.004
[12] Seddon AB. Mid-infrared (IR)—a hot topic: the potential for using mid-IR light for non-invasive early detection of skin cancerin vivo. Phys Status Solidi (B) 2013; 250: 1020–7. doi: 10.1002/pssb.201248524
[13] López-Lorente ÁI, Mizaikoff B. Mid-infrared spectroscopy for protein analysis: potential and challenges. Anal Bioanal Chem 2016; 408: 2875–89. doi: 10.1007/s00216-016-9375-5
[14] Jackson SD. Towards high-power mid-infrared emission from a fibre laser. Nat Photonics 2012; 6: 423–31. doi: 10.1038/nphoton.2012.149
[15] Babushkin I, Tajalli A, Sayinc H, Morgner U, Steinmeyer G et al. Simple route toward efficient frequency conversion for generation of fully coherent supercontinua in the mid-IR and UV range. Light Sci Appl 2017; 6: e16218; doi: 10.1038/lsa.2016.218.
[16] Petersen CR, Møller U, Kubat I, Zhou BB, Dupont S et al. Mid-infrared supercontinuum covering the 1.4–13.3-μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat Photonics 2014; 8: 830–4. doi: 10.1038/nphoton.2014.213
[17] Zheng MC, Aung NL, Basak A, Liu PQ, Wang XJ et al. High power spiral cavity quantum cascade superluminescent emitter. Opt Express 2015; 23: 2713–9. doi: 10.1364/OE.23.002713
[18] Zhang ZY, Wang ZG, Xu B, Jin P, Sun ZZ et al. High-performance quantum-dot superluminescent diodes. IEEE Photonics Technol Lett 2004; 16: 27–9. doi: 10.1109/LPT.2003.820481
[19] Lin CF, Juang CS. Superluminescent diodes with bent waveguide. IEEE Photonics Technol Lett 1996; 8: 206–8. doi: 10.1109/68.484242
[20] Rossetti M, Markus A, Fiore A, Occhi L, Velez C. Quantum dot superluminescent diodes emitting at 1.3 μm. IEEE Photonics Technol Lett 2005; 17: 540–2.
[21] Aung NL, Yu Z, Yu Y, Liu PQ, Wang XJ et al. High peak power (≥10 mW) quantum cascade superluminescent emitter. Appl Phys Lett 2014; 105: 221111. doi: 10.1063/1.4903349
[22] Zibik EA, Ng WH, Revin DG, Wilson LR, Cockburn JW et al. Broadband 6-μm < λ < 8-μm superluminescent quantum cascade light-emitting diodes. Appl Phys Lett 2006; 88: 121109. doi: 10.1063/1.2188371
[23] Becker C, Sirtori C. Lateral current spreading in unipolar semiconductor lasers. J Appl Phys 2001; 90: 1688–91. doi: 10.1063/1.1384490
[24] Rossetti M, Li L, Fiore A, Occhi L, Velez C et al. High-power quantum-dot superluminescent diodes with p-doped active region. IEEE Photonics Technol Lett 2006; 18: 1946–8. doi: 10.1109/LPT.2006.882303
[25] Nilsson HH, Zhang JZ, Galbraith I. Enhancement and reduction of line broadening due to Auger scattering in modulation-doped InGaAs/GaAs quantum dot devices. Appl Phys Lett 2007; 91: 161113. doi: 10.1063/1.2799244
[26] Gündoğdu K, Hall KC, Boggess TF, Deppe DG, Shchekin OB. Ultrafast electron capture into p-modulation-doped quantum dots. Appl Phys Lett 2004; 85: 4570–2. doi: 10.1063/1.1815371
[27] Zhang ZY, Luxmoore IJ, Jin CY, Liu HY, Jiang Q et al. Effect of facet angle on effective facet reflectivity and operating characteristics of quantum dot edge emitting lasers and superluminescent light-emitting diodes. Appl Phys Lett 2007; 91: 081112. doi: 10.1063/1.2772845
[28] Liang JH, Maruyama T, Ogawa Y, Kobayashi S, Sonoda J et al. (eds)High-Power High-Efficiency Superluminescent Diodes with J-Shaped Ridge Waveguide Structure Proceedings of the 14th Indium Phosphide and Related Materials Conference. IEEE: Stockholm, Sweden. 2002.
[29] Gmachl C, Sivco DL, Colombelli R, Capasso F, Cho AY. Ultra-broadband semiconductor laser. Nature 2002; 415: 883–7. doi: 10.1038/415883a