[1] Zhang, H., Su, Q. & Chen, S. M. Quantum-dot and organic hybrid tandem light-emitting diodes with multi-functionality of full-color-tunability and white-light-emission. Nature Communications 11, 2826 (2020). doi: 10.1038/s41467-020-16659-x
[2] Lee, T. et al. Bright and stable quantum dot light-emitting diodes. Advanced Materials 34, 2106276 (2022). doi: 10.1002/adma.202106276
[3] Dai, X. L. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96-99 (2014). doi: 10.1038/nature13829
[4] Yu, P. et al. Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component. Light: Science & Applications 11, 162 (2022).
[5] Deng, Y. Z. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nature Photonics 16, 505-511 (2022). doi: 10.1038/s41566-022-00999-9
[6] Chen, Z. N. et al. Color revolution: prospects and challenges of quantum-dot light-emitting diode display technologies. Small Methods 8, 2300359 (2024). doi: 10.1002/smtd.202300359
[7] Lin, L. H. et al. Flexible ultrahigh‐resolution quantum‐dot light‐emitting diodes. Advanced Functional Materials 34, 2408604 (2024). doi: 10.1002/adfm.202408604
[8] Mei, W. H. et al. High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach. Nano Research 13, 2485-2491 (2020). doi: 10.1007/s12274-020-2883-9
[9] Roh, H. et al. Enhanced performance of pixelated quantum dot light‐emitting diodes by inkjet printing of quantum dot-polymer composites. Advanced Optical Materials 9, 2002129 (2021). doi: 10.1002/adom.202002129
[10] Wei, C. T. et al. A universal ternary-solvent-ink strategy toward efficient inkjet-printed perovskite quantum dot light-emitting diodes. Advanced Materials 34, 2107798 (2022). doi: 10.1002/adma.202107798
[11] Ahn, J. et al. Ink-lithography for property engineering and patterning of nanocrystal thin films. ACS Nano 15, 15667-15675 (2021). doi: 10.1021/acsnano.1c04772
[12] Kim, B. H. et al. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Letters 15, 969-973 (2015). doi: 10.1021/nl503779e
[13] Baek, S. et al. Generalised optical printing of photocurable metal chalcogenides. Nature Communications 13, 5262 (2022). doi: 10.1038/s41467-022-33040-2
[14] Choi, M. K. et al. Extremely vivid, highly transparent, and ultrathin quantum dot light-emitting diodes. Advanced Materials 30, 1703279 (2018). doi: 10.1002/adma.201703279
[15] Kim, L. et al. Contact printing of quantum dot light-emitting devices. Nano Letters 8, 4513-4517 (2008). doi: 10.1021/nl8025218
[16] Choi, M. K. et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nature Communications 6, 7149 (2015). doi: 10.1038/ncomms8149
[17] Meng, T. T. et al. Ultrahigh-resolution quantum-dot light-emitting diodes. Nature Photonics 16, 297-303 (2022). doi: 10.1038/s41566-022-00960-w
[18] Kim, T. H. et al. Heterogeneous stacking of nanodot monolayers by dry pick-and-place transfer and its applications in quantum dot light-emitting diodes. Nature Communications 4, 2637 (2013). doi: 10.1038/ncomms3637
[19] Luo, C. Z. et al. High-resolution, highly transparent, and efficient quantum dot light-emitting diodes. Advanced Materials 35, 2303329 (2023). doi: 10.1002/adma.202303329
[20] Yang, J. et al. High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking. Nature Communications 11, 2874 (2020). doi: 10.1038/s41467-020-16652-4
[21] Hahm, D. et al. Direct patterning of colloidal quantum dots with adaptable dual-ligand surface. Nature Nanotechnology 17, 952-958 (2022). doi: 10.1038/s41565-022-01182-5
[22] Wang, Y. Y. et al. Direct optical lithography of functional inorganic nanomaterials. Science 357, 385-388 (2017). doi: 10.1126/science.aan2958
[23] Yang, P. H. et al. High‐resolution inkjet printing of quantum dot light‐emitting microdiode arrays. Advanced Optical Materials 8, 1901429 (2020). doi: 10.1002/adom.201901429
[24] Kim, J. et al. Recent advances and challenges of colloidal quantum dot light-emitting diodes for display applications. Advanced Materials 36, 2212220 (2024). doi: 10.1002/adma.202212220
[25] Ryu, J. E. et al. Technological breakthroughs in chip fabrication, transfer, and color conversion for high-performance micro-LED displays. Advanced Materials 35, 2204947 (2023). doi: 10.1002/adma.202204947
[26] Fan, J. P. & Qian, L. Quantum dot patterning by direct photolithography. Nature Nanotechnology 17, 906-907 (2022). doi: 10.1038/s41565-022-01187-0
[27] Lu, S. Y. et al. Beyond a linker: the role of photochemistry of crosslinkers in the direct optical patterning of colloidal nanocrystals. Angewandte Chemie International Edition 61, e202202633 (2022). doi: 10.1002/anie.202202633
[28] Liu, D. et al. Nondestructive direct optical patterning of perovskite nanocrystals with carbene-based ligand cross-linkers. ACS Nano 18, 6896-6907 (2024). doi: 10.1021/acsnano.3c07975
[29] Pan, J. A. et al. Ligand-free direct optical lithography of bare colloidal nanocrystals via photo-oxidation of surface ions with porosity control. ACS Nano 16, 16067-16076 (2022). doi: 10.1021/acsnano.2c04189
[30] Zhang, P. P. et al. Direct in situ photolithography of perovskite quantum dots based on photocatalysis of lead bromide complexes. Nature Communications 13, 6713 (2022). doi: 10.1038/s41467-022-34453-9
[31] Gao, Z. Y., Shi, J. B. & Yang, G. L. Quantum dots photoresist for direct photolithography patterning. Advanced Optical Materials 12, 2401106 (2024). doi: 10.1002/adom.202401106
[32] Chen, Z. et al. Research progress of quantum dot photolithography patterning and direct photolithography application. Nano Research 17, 10386-10411 (2024). doi: 10.1007/s12274-024-6896-7
[33] Park, S. Y. et al. Patterning quantum dots via photolithography: a review. Advanced Materials 35, 2300546 (2023). doi: 10.1002/adma.202300546
[34] Guo, W. S. et al. Direct photolithography patterning of quantum dot-polymer. Advanced Functional Materials 34, 2310338 (2024). doi: 10.1002/adfm.202310338
[35] Xiao, P. W. et al. Ligand-engineered direct optical lithography of nanocrystals with industrially compatible solvents. ACS Nano 19, 14509-14520 (2025). doi: 10.1021/acsnano.5c04195
[36] Chen, Z. et al. Rigid crosslinker-assisted nondestructive direct photolithograph for patterned QLED displays. Light: Science & Applications 14, 251 (2025).
[37] Ko, J. et al. Ligand-assisted direct photolithography of perovskite nanocrystals encapsulated with multifunctional polymer ligands for stable, full-colored, high-resolution displays. Nano Letters 21, 2288-2295 (2021). doi: 10.1021/acs.nanolett.1c00134
[38] Li, H. T. , Wang, J. M. & Chen, S. M. Face-to-face integrated tandem quantum-dot LEDs with high performance and multifunctionality. Light: Science & Applications 14, 171 (2025).
[39] Luo, C. Z. et al. Ultrahigh-resolution, high-fidelity quantum dot pixels patterned by dielectric electrophoretic deposition. Light: Science & Applications 13, 273 (2024).
[40] Jang, H. J. et al. Progress of display performances: AR, VR, QLED, and OLED. Journal of Information Display 21, 1-9 (2020). doi: 10.1080/15980316.2020.1720835
[41] Yoo, J. et al. Highly efficient printed quantum dot light-emitting diodes through ultrahigh-definition double-layer transfer printing. Nature Photonics 18, 1105-1112 (2024). doi: 10.1038/s41566-024-01496-x
[42] Chen, L. N., Qin, Z. Y. & Chen, S. M. Ultrahigh resolution pixelated top-emitting quantum-dot light-emitting diodes enabled by color-converting cavities. Small Methods 6, 2101090 (2022). doi: 10.1002/smtd.202101090