| [1] | Huang, D. et al. Optical coherence tomography. Science 254, 1178-81 (1991). doi: 10.1126/science.1957169 |
| [2] | Singh, M., Zvietcovich, F. & Larin, K. V. Introduction to optical coherence elastography: tutorial. J Opt Soc Am A Opt Image Sci Vis 39, 418-430 (2022). doi: 10.1364/JOSAA.444808 |
| [3] | Zvietcovich, F. & Larin, K. V. Wave-based optical coherence elastography: The 10-year perspective. Prog Biomed Eng (Bristol) 4, 012007 (2022). doi: 10.1088/2516-1091/ac4512 |
| [4] | Zvietcovich, F. et al. Confocal air-coupled ultrasonic optical coherence elastography probe for quantitative biomechanics. Opt Lett 45, 6567-6570 (2020). doi: 10.1364/OL.410593 |
| [5] | Zvietcovich, F. et al. In vivo assessment of corneal biomechanics under a localized cross-linking treatment using confocal air-coupled optical coherence elastography. Biomed Opt Express 13, 2644-2654 (2022). doi: 10.1364/BOE.456186 |
| [6] | Mekonnen, T. T. et al. Acute alcohol consumption modulates corneal biomechanical properties as revealed by optical coherence elastography. J Biomech 169, 112155 (2024). doi: 10.1016/j.jbiomech.2024.112155 |
| [7] | Mekonnen, T. et al. Longitudinal assessment of the effect of alkali burns on corneal biomechanical properties using optical coherence elastography. J Biophotonics 15, e202200022 (2022). doi: 10.1002/jbio.202200022 |
| [8] | Lin, X. et al. Hyaluronan Modulates the Biomechanical Properties of the Cornea. Invest Ophthalmol Vis Sci 63, 6 (2022). |
| [9] | Villegas, L. et al. Revealing regional variations in scleral shear modulus in a rabbit eye model using multi-directional ultrasound optical coherence elastography. Sci Rep 14, 21010 (2024). doi: 10.1038/s41598-024-71343-0 |
| [10] | Mekonnen, T. T. et al. Dual optical elastography detects TGF-β -induced alterations in the biomechanical properties of skin scaffolds. J Biomed Opt 29, 095002 (2024). |
| [11] | Ambrozinski, L. et al. Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media. Appl Phys Lett 109, 043701 (2016). doi: 10.1063/1.4959827 |
| [12] | Zvietcovich, F. et al. Reverberant 3D optical coherence elastography maps the elasticity of individual corneal layers. Nat Commun 10, 4895 (2019). doi: 10.1038/s41467-019-12803-4 |
| [13] | Zaitsev, V. Y. et al. Strain and elasticity imaging in compression optical coherence elastography: The two-decade perspective and recent advances. J Biophotonics 14, e202000257 (2021). doi: 10.1002/jbio.202000257 |
| [14] | Singh, M. et al. Optical coherence elastography. Nat Rev Meth Primers 5, 39 (2025). doi: 10.1038/s43586-025-00406-x |
| [15] | Parker, K. J. et al. Reverberant shear wave fields and estimation of tissue properties. Phys Med Biol 62, 1046-1061 (2017). doi: 10.1088/1361-6560/aa5201 |
| [16] | Kunanta, N. et al. Performance of Shear Wave Speed Measurements by Using Reverberant Optical Coherence Elastography. Chiang Mai J Sci 49, 81-92 (2022). doi: 10.12982/CMJS.2022.007 |
| [17] | Caiaffa, C. D. et al. Dolutegravir induces FOLR1 expression during brain organoid development. Front Mol Neurosci 17, 1394058 (2024). doi: 10.3389/fnmol.2024.1394058 |
| [18] | Mekonnen, T. et al. Reverberant optical coherence elastography using multifocal acoustic radiation force. Opt Lett 48, 2773-2776 (2023). doi: 10.1364/OL.482201 |
| [19] | Mekonnen, T. et al. Multifocal acoustic radiation force-based reverberant optical coherence elastography for evaluation of ocular globe biomechanical properties. J Biomed Opt 28, 095001 (2023). |
| [20] | Schmidt, G., Bouma, B. E. & Uribe-patarroyo, N. Asynchronous, semi-reverberant elastography. Optica 11, 1285-1294 (2024). doi: 10.1364/OPTICA.528507 |
| [21] | Xu, H. et al. Noncontact elasticity measurement of hydrogels in a culture dish using reverberant optical coherence elastography. J Biomech 169, 112154 (2024). doi: 10.1016/j.jbiomech.2024.112154 |
| [22] | Tian, F. X. A novel method of pipeline obstacle detection using ultrasonic. Appl Mech Mater 373, 819-823 (2013). |
| [23] | van der Horst, J. et al. (Radboud University Nijmegen, 2023). |
| [24] | You, Y. & Riedel, J. Approaching phase-imaging through defocusing shadowgraphy for acoustic resonator diagnosis and the capability of direct index-of-refraction measurements. Rev Sci Instrum 92, 103703 (2021). doi: 10.1063/5.0058334 |
| [25] | Ormachea, J. & Parker, K. J. Reverberant shear wave phase gradients for elastography. Phys Med Biol 66 (2021). |
| [26] | Ge, G. R. et al. Assessing corneal cross-linking with reverberant 3D optical coherence elastography. J Biomed Opt 27 (2022). |
| [27] | Ge, G. R. et al. Mouse Brain Elastography Changes with Sleep/Wake Cycles, Aging, and Alzheimer's Disease. Neuroimage, 120662 (2024). |
| [28] | Aleman-Castaneda, L. A., Zvietcovich, F. & Parker, K. J. Reverberant Elastography for the Elastic Characterization of Anisotropic Tissues. IEEE J Sel Top Quantum Electron 27, 1-12 (2021). |
| [29] | Food, U. & Administration, D. Marketing clearance of diagnostic ultrasound systems and transducers: Guidance for industry and Food and Drug Administration staff. Center for Devices and Radiological Health, US Food and Drug Administration, Rockville, MD, Tech. Rep (2019). |
| [30] | Singh, M. et al. Whole embryo biomechanics with reverberant optical coherence elastography. Optica 11, 686-692 (2024). doi: 10.1364/OPTICA.521367 |
| [31] | Singh, M. et al. Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second. Opt Lett 40, 2588-91 (2015). |
| [32] | Zevallos-Delgado, C. et al. Acoustic Radiation Force Optical Coherence Elastography of the Crystalline Lens: Safety. Transl Vis Sci Technol 13, 36 (2024). |
| [33] | Twa, M. D. et al. Spatial characterization of corneal biomechanical properties with optical coherence elastography after UV cross-linking. Biomed Opt Express 5, 1419-27 (2014). doi: 10.1364/BOE.5.001419 |
| [34] | Zvietcovich, F. & Larin, K. V. Wave-based optical coherence elastography: The 10-year perspective. Prog Biomed Eng (Bristol) 4 (2022). |
| [35] | Sanchez, I. et al. The parameters of the porcine eyeball. Graefes Arch Clin Exp Ophthalmol 249, 475-82 (2011). doi: 10.1007/s00417-011-1617-9 |
| [36] | Wang, S. & Larin, K. V. Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics. Opt Lett 39, 41-4 (2014). doi: 10.1364/OL.39.000041 |
| [37] | Wang, R. K., Ma, Z. & Kirkpatrick, S. J. Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue. Appl Phys Lett 89, 144103 (2006). doi: 10.1063/1.2357854 |
| [38] | Song, S., Huang, Z. & Wang, R. K. Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation. J Biomed Opt 18, 121505 (2013). doi: 10.1117/1.JBO.18.12.121505 |
| [39] | Duvvuri, C. et al. Determinants of Human Corneal Mechanical Wave Dispersion for In Vivo Optical Coherence Elastography. Transl Vis Sci Technol 14, 26 (2025). |
| [40] | Ormachea, J., Castaneda, B. & Parker, K. J. Shear Wave Speed Estimation Using Reverberant Shear Wave Fields: Implementation and Feasibility Studies. Ultrasound Med Biol 44, 963-977 (2018). doi: 10.1016/j.ultrasmedbio.2018.01.011 |