[1] Lewandowski, W. & Arias, E. F. GNSS times and UTC. Metrologia 48, S219-S224 (2011). doi: 10.1088/0026-1394/48/4/S14
[2] International Telecommunication Union. ITU-T Recommendation ITU-T G.8271.1/Y.1366.1: Network Limits for Time Synchronization (ITU, 2013).
[3] Legaie, R., Pichen, C. J. & Pritchard, J. D. Sub-kilohertz excitation lasers for quantum information processing with Rydberg atoms. J. Opt. Soc. Am. B 35, 892-898 (2018). doi: 10.1364/JOSAB.35.000892
[4] Deschenes, J. D. et al. Synchronization of distant optical clocks at the femtosecond level. Phys. Rev. X 6, 021016 (2016).
[5] Boroson, D. M. et al. Overview and results of the lunar laser communication demonstration. Proceedings of SPIE 8971, Free-Space Laser Communication and Atmospheric Propagation XXVI 89710S (SPIE, San Francisco, California, United States, 2014).
[6] Riehle, F. Optical clock networks. Nat. Photonics 11, 25-31 (2017). doi: 10.1038/nphoton.2016.235
[7] Grudinin, I. S. et al. Ultrahigh Q crystalline microcavities. Opt. Commun. 265, 33-38 (2006). doi: 10.1016/j.optcom.2006.03.028
[8] Lim, J. et al. Chasing the thermodynamical noise limit in whispering-gallery-mode resonators for ultrastable laser frequency stabilization. Nat. Commun. 8, 8 (2017). doi: 10.1038/s41467-017-00021-9
[9] Alnis, J. et al. Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization. Phys. Rev. A 84, 011804 (2011). doi: 10.1103/PhysRevA.84.011804
[10] Xie, Z. D. et al. Extended ultrahigh-Q-cavity diode laser. Opt. Lett. 40, 2596-2599 (2015). doi: 10.1364/OL.40.002596
[11] Lim, J. et al. A stabilized chip-scale Kerr frequency comb via a high-Q reference photonic microresonator. Opt. Lett. 41, 3706-3709 (2016). doi: 10.1364/OL.41.003706
[12] Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015). doi: 10.1038/ncomms8957
[13] Huang, S. W. et al. A low- phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz. Sci. Rep. 5, 13355 (2015). doi: 10.1038/srep13355
[14] Savchenkov, A. A. et al. Stabilization of a Kerr frequency comb oscillator. Opt. Lett. 38, 2636-2639 (2013). doi: 10.1364/OL.38.002636
[15] Maleki, L. et al. Miniature atomic clock for space applications. Proceedings of SPIE 9616 Nanophotonics and Macrophotonics for Space Environments IX 96160L (SPIE, San Diego, California, United States, 2015).
[16] Liang, W. et al. Resonant microphotonic gyroscope. Optica 4, 114-117 (2017). doi: 10.1364/OPTICA.4.000114
[17] Savchenkov, A. A., Matsko, A. B., Ilchenko, V. S., Yu, N. & Maleki, L. Whispering-gallery-mode resonators as frequency references. II. Stabilization. J. Opt. Soc. Am. B 24, 2988-2997 (2007). doi: 10.1364/JOSAB.24.002988
[18] Fescenko, I. et al. Dual-mode temperature compensation technique for laser stabilization to a crystalline whispering gallery mode resonator. Opt. Express 20, 19185-19193 (2012). doi: 10.1364/OE.20.019185
[19] Baumgartel, L. M., Thompson, R. J. & Yu, N. Frequency stability of a dual-mode whispering gallery mode optical reference cavity. Opt. Express 20, 29798-29806 (2012). doi: 10.1364/OE.20.029798
[20] Strekalov, D. V., Thompson, R. J., Baumgartel, L. M., Grudinin, I. S. & Yu, N. Temperature measurement and stabilization in a birefringent whispering gallery mode resonator. Opt. Express 19, 14495-14501 (2011). doi: 10.1364/OE.19.014495
[21] Vig, J. R. (ed). Dual-mode oscillators for clocks and sensors. Proceedings of the 1999 IEEE International Ultrasonics Symposium, 17-20 October (IEEE, Caesars Tahoe, NV, USA, 1999).
[22] Matsko, A. B., Savchenkov, A. A., Yu, N. & Maleki, L. Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations. J. Opt. Soc. Am. B 24, 1324-1335 (2007). doi: 10.1364/JOSAB.24.001324
[23] Ghosh, G. Handbook of Thermo-Optic Coefficients of Optical Materials with Applications. (Academic, San Diego, CA, 1998).
[24] Lim, J., Liang, W., Matsko, A. B., Maleki, L. & Wong, C. W. Time-dependent correlation of cross-polarization mode for microcavity temperature sensing and stabilization. CLEO: Appl. Technol. https://doi.org/10.1364/CLEO_AT.2017.JF2D.4 (2017).
[25] Drever, R. W. P. et al. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97-105 (1983). doi: 10.1007/BF00702605
[26] Notcutt, M., Ma, L. S., Ye, J. & Hall, J. L. Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity. Opt. Lett. 30, 1815-1817 (2005). doi: 10.1364/OL.30.001815
[27] Dale, E. et al. On phase noise of self-injection locked semiconductor lasers. Proceedings of SPIE Laser Resonators, Microresonators, and Beam Control XVI 89600X (SPIE, San Francisco, California, United States) https://doi.org/10.1117/12.2044824 (2014).