[1] Lin, Y. J. et al. Research of relative spectral responsivity calibration of InGaAs photodetector based on supercontinuum light source. Proceedings of SPIE 11552, Optical Metrology and Inspection for Industrial Applications VII. SPIE, 2020.
[2] Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233-237 (2002). doi: 10.1038/416233a
[3] Moon, S. & Kim, D. Y. Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source. Optics Express 14, 11575-11584 (2006). doi: 10.1364/OE.14.011575
[4] Halloran, M. et al. Simultaneous measurements of light hydrocarbons using supercontinuum laser absorption spectroscopy. Energy & Fuels 34, 3671-3678 (2020).
[5] Dudley, J. M. & Taylor, J. R. Supercontinuum Generation in Optical Fibers (Cambridge: Cambridge University Press, 2010).
[6] You, Y. J. et al. Ultrahigh-resolution optical coherence tomography at 1.3 µm central wavelength by using a supercontinuum source pumped by noise-like pulses. Laser Physics Letters 13, 025101 (2015).
[7] Urraca, R. et al. Estimation of total soluble solids in grape berries using a hand-held NIR spectrometer under field conditions. Journal of the Science of Food and Agriculture 96, 3007-3016 (2016). doi: 10.1002/jsfa.7470
[8] Hernandez-Garcia, J. C. et al. Experimental study on a broad and flat supercontinuum spectrum generated through a system of two PCFs. Laser Physics Letters 10, 075101 (2013). doi: 10.1088/1612-2011/10/7/075101
[9] Michalska, M. et al. Mid-infrared, super-flat, supercontinuum generation covering the 2-5 µm spectral band using a fluoroindate fibre pumped with picosecond pulses. Scientific Reports 6, 39138 (2016). doi: 10.1038/srep39138
[10] Demircan, A. & Bandelow, U. Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation. Applied Physics B 86, 31-39 (2007).
[11] Billet, M. et al. Emission of multiple dispersive waves from a single Raman-shifting soliton in an axially-varying optical fiber. Optics Express 22, 25673-25678 (2014). doi: 10.1364/OE.22.025673
[12] Rong, J. F., Yang, H. & Xiao, Y. Z. Accurately shaping supercontinuum spectrum via cascaded PCF. Sensors 20, 2478 (2020). doi: 10.3390/s20092478
[13] Zhang, H. Y. et al. All-fiber high power supercontinuum generation by cascaded photonic crystal fibers ranging from 370 nm to 2400 nm. IEEE Photonics Journal 12, 7101608 (2020).
[14] Lou, J. W. et al. Broader and flatter supercontinuum spectra in dispersion-tailored fibers. Proceedings of Optical Fiber Communication Conference. Dallas, TX, USA: IEEE, 1997.
[15] Eftekhar, M. A. et al. Accelerated nonlinear interactions in graded-index multimode fibers. Nature Communications 10, 1638 (2019). doi: 10.1038/s41467-019-09687-9
[16] Bi, W. J. et al. Ultraviolet-extended supercontinuum generation in zero-dispersion wavelength decreasing photonic crystal fibers. IEEE Photonics Journal 12, 3200608 (2020).
[17] Hu, H. Y., Li, W. B. & Dutta, N. K. Dispersion-engineered tapered planar waveguide for coherent supercontinuum generation. Optics Communications 324, 252-257 (2014). doi: 10.1016/j.optcom.2014.03.074
[18] Chen, H. H. et al. Ultraviolet-extended flat supercontinuum generation in cascaded photonic crystal fiber tapers. Laser Physics Letters 10, 085401 (2013). doi: 10.1088/1612-2011/10/8/085401
[19] Chemnitz, M. et al. Thermodynamic control of soliton dynamics in liquid-core fibers. Optica 5, 695-703 (2018). doi: 10.1364/OPTICA.5.000695
[20] Singh, S. P., Mishra, V. & Varshney, S. K. Mid-IR multipeak and stepwise blueshifted dispersive wave generation in liquid-filled chalcogenide capillary optical fibers. Journal of the Optical Society of America B 33, D65-D71 (2016). doi: 10.1364/JOSAB.33.000D65
[21] Köttig, F. et al. Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion. Nature Communications 8, 813 (2017). doi: 10.1038/s41467-017-00943-4
[22] Sollapur, R. et al. Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers. Light:Science & Applications 6, e17124 (2017).
[23] Lühder, T. A. K. et al. Resonance-induced dispersion tuning for tailoring nonsolitonic radiation via nanofilms in exposed core fibers. Laser & Photonics Reviews 14, 1900418 (2020).
[24] Qi, X. et al. Essentials of resonance-enhanced soliton-based supercontinuum generation. Optics Express 28, 2557-2571 (2020). doi: 10.1364/OE.382158
[25] Jin, A. J. et al. High-power ultraflat near-infrared supercontinuum generation pumped by a continuous amplified spontaneous emission source. IEEE Photonics Journal 7, 1600409 (2015).
[26] Yin, K. et al. Ultrahigh-brightness, spectrally-flat, short-wave infrared supercontinuum source for long-range atmospheric applications. Optics Express 24, 20010-20020 (2016). doi: 10.1364/OE.24.020010
[27] Liao, J. F. et al. Design of step-index-microstructured hybrid fiber for coherent supercontinuum generation. Optik 243, 167393 (2021). doi: 10.1016/j.ijleo.2021.167393
[28] Guo, Y. C. et al. Generation of supercontinuum and frequency comb in a nitrobenzene-core photonic crystal fiber with all-normal dispersion profile. Optics Communications 481, 126555 (2021). doi: 10.1016/j.optcom.2020.126555
[29] Rao, D. S. S. et al. Ultra-low noise supercontinuum generation with flat-near zero all normal dispersion pure silica fiber at GHz reptition rate. Proceedings of the Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF). Zurich: Optical Society of America, 2018.
[30] Junaid, S. et al. Supercontinuum generation in a carbon disulfide core microstructured optical fiber. Optics Express 29, 19891-19902 (2021). doi: 10.1364/OE.426313
[31] Kuyken, B. et al. Octave-spanning coherent supercontinuum generation in an AlGaAs-on-insulator waveguide. Optics Letters 45, 603-606 (2020). doi: 10.1364/OL.45.000603
[32] Warren-Smith, S. C. et al. Exposed-core microstructured optical fibers for real-time fluorescence sensing. Optics Express 17, 18533-18542 (2009). doi: 10.1364/OE.17.018533
[33] Warren-Smith, S. C. et al. Wavelength shifted third harmonic generation in an exposed-core microstructured optical fiber. Proceedings of 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC). Singapore: IEEE, 2017.
[34] Ngo, G. Q. et al. Scalable functionalization of optical fibers using atomically thin semiconductors. Advanced Materials 32, 2003826 (2020). doi: 10.1002/adma.202003826
[35] Sharma, M., Konar, S. & Khan, K. R. Supercontinuum generation in highly nonlinear hexagonal photonic crystal fiber at very low power. Journal of Nanophotonics 9, 093073 (2015). doi: 10.1117/1.JNP.9.093073
[36] Roy, S., Bhadra, S. K. & Agrawal, G. P. Dispersive waves emitted by solitons perturbed by third-order dispersion inside optical fibers. Physical Review A 79, 023824 (2009). doi: 10.1103/PhysRevA.79.023824
[37] Black, J. A. et al. Group-velocity-dispersion engineering of Tantala integrated photonics. Optics Letters 46, 817-820 (2021). doi: 10.1364/OL.414095
[38] Schmitt, K. et al. Evanescent field sensors based on tantalum pentoxide waveguides – a review. Sensors 8, 711-738 (2008). doi: 10.3390/s8020711
[39] Lamee, K. F. et al. Nanophotonic tantala waveguides for supercontinuum generation pumped at 1560 nm. Optics Letters 45, 4192-4195 (2020). doi: 10.1364/OL.396950
[40] Sierra, J. H. et al. Low-loss pedestal Ta2O5 nonlinear optical waveguides. Optics Express 27, 37516-37521 (2019). doi: 10.1364/OE.27.037516
[41] Motemani, Y. et al. Nanostructured Ti–Ta thin films synthesized by combinatorial glancing angle sputter deposition. Nanotechnology 27, 495604 (2016). doi: 10.1088/0957-4484/27/49/495604
[42] Broadway, D. M., Platonov, Y. Y. & Gomez, L. A. Achieving desired thickness gradients on flat and curved substrates. Proceedings of SPIE 3766, X-Ray Optics, Instruments, and Missions II. Denver, CO, United States: SPIE, 1999.
[43] Yu, B. et al. Control of lateral thickness gradients of Mo-Si multilayer on curved substrates using genetic algorithm. Optics Letters 40, 3958-3961 (2015). doi: 10.1364/OL.40.003958
[44] Fan, Q. H., Chen, X. H. & Zhang, Y. Computer simulation of film thickness distribution in symmetrical magnet magnetron sputtering. Vacuum 46, 229-232 (1995). doi: 10.1016/0042-207X(94)00051-4
[45] Vukovic, N. & Broderick, N. G. R. Method for improving the spectral flatness of the supercontinuum at 1. 55 µm in tapered microstructured optical fibers. Physical Review A 82, 043840 (2010). doi: 10.1103/PhysRevA.82.043840
[46] Salido-Monzú, D. & Wieser, A. Simultaneous distance measurement at multiple wavelengths using the intermode beats from a coherent supercontinuum. Journal of Physics:Conference Series 1065, 142020 (2018). doi: 10.1088/1742-6596/1065/14/142020
[47] Raabe, N. et al. Role of intrapulse coherence in carrier-envelope phase stabilization. Physical Review Letters 119, 123901 (2017). doi: 10.1103/PhysRevLett.119.123901
[48] Kormokar, R., Shamim, M. H. M. & Rochette, M. Highorder analytical formulation of soliton self-frequency shift. Journal of the Optical Society of America B 38, 466-475 (2021). doi: 10.1364/JOSAB.409240
[49] Humbach, O. et al. Analysis of OH absorption bands in synthetic silica. Journal of Non-Crystalline Solids 203, 19-26 (1996). doi: 10.1016/0022-3093(96)00329-8
[50] Hofsäss, H. & Zhang, K. Surfactant sputtering. Applied Physics A 92, 517-524 (2008). doi: 10.1007/s00339-008-4678-9
[51] Demiryont, H., Sites, J. R. & Geib, K. Effects of oxygen content on the optical properties of tantalum oxide films deposited by ion-beam sputtering. Applied Optics 24, 490-495 (1985). doi: 10.1364/AO.24.000490
[52] Chang, P. H. & Liu, H. Y. Structures of tantalum pentoxide thin films formed by reactive sputtering of Ta metal. Thin Solid Films 258, 56-63 (1995). doi: 10.1016/0040-6090(94)06402-4
[53] Hickstein, D. D. et al. Quasi-phase-matched supercontinuum generation in photonic waveguides. Physical Review Letters 120, 053903 (2018). doi: 10.1103/PhysRevLett.120.053903
[54] Wieduwilt, T. et al. Gold-reinforced silver nanoprisms on optical fiber tapers—a new base for high precision sensing. APL Photonics 1, 066102 (2016). doi: 10.1063/1.4953671
[55] Tuniz, A., Wieduwilt, T. & Schmidt, M. A. Tuning the effective PT phase of plasmonic eigenmodes. Physical Review Letters 123, 213903 (2019). doi: 10.1103/PhysRevLett.123.213903
[56] Stolen, R. H. et al. Raman response function of silica-core fibers. Journal of the Optical Society of America B 6, 1159-1166 (1989). doi: 10.1364/JOSAB.6.001159
[57] Kibler, B., Dudley, J. M. & Coen, S. Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area. Applied Physics B 81, 337-342 (2005). doi: 10.1007/s00340-005-1844-z
[58] Agrawal, G. P. Nonlinear Fiber Optics. 4th edn. (San Diego: Academic Press, 1995).
[59] Malitson, I. H. Interspecimen comparison of the refractive index of fused silica. Journal of the Optical Society of America 55, 1205-1209 (1965). doi: 10.1364/JOSA.55.001205
[60] Bright, T. J. et al. Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films. Journal of Applied Physics 114, 083515 (2013). doi: 10.1063/1.4819325
[61] Kato, T. et al. Measurement of the nonlinear refractive index in optical fiber by the cross-phase-modulation method with depolarized pump light. Optics Letters 20, 988-990 (1995). doi: 10.1364/OL.20.000988
[62] Belt, M. et al. Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates. Optica 4, 532-536 (2017). doi: 10.1364/OPTICA.4.000532
[63] Foster, M. A., Moll, K. D. & Gaeta, A. L. Optimal waveguide dimensions for nonlinear interactions. Optics Express 12, 2880-2887 (2004). doi: 10.1364/OPEX.12.002880
[64] Rosenberg, Y. et al. Boosting few-cycle soliton self-frequency shift using negative prechirp. Optics Express 28, 3107-3115 (2020). doi: 10.1364/OE.383014