[1] Moughames, J. et al. 3D printed multimode-splitters for photonic interconnects. Optical Materials Express 10, 2952-2961 (2020).
[2] Ulkir, O. Design and fabrication of an electrothermal MEMS micro-actuator with 3D printing technology. Materials Research Express 7, 075015 (2020). doi: 10.1088/2053-1591/aba8e3
[3] Li, J. H. et al. 3D printing of hydrogels: rational design strategies and emerging biomedical applications. Materials Science and Engineering: R: Reports 140, 100543 (2020).
[4] Derakhshanfar, S. et al. 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioactive Materials 3, 144-156 (2018).
[5] Ngo, T. D. et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B:Engineering 143, 172-196 (2018). doi: 10.1016/j.compositesb.2018.02.012
[6] Liaw, C. Y. & Guvendiren, M. Current and emerging applications of 3D printing in medicine. Biofabrication 9, 024102 (2017). doi: 10.1088/1758-5090/aa7279
[7] Bikas, H., Stavropoulos, P. & Chryssolouris, G. Additive manufacturing methods and modelling approaches: a critical review. The International Journal of Advanced Manufacturing Technology 83, 389-405 (2016). doi: 10.1007/s00170-015-7576-2
[8] Bagheri, A. & Jin, J. Y. Photopolymerization in 3D printing. ACS Applied Polymer Materials 1, 593-611 (2019). doi: 10.1021/acsapm.8b00165
[9] Marchetti, B., Karsili, T. N. V. & Ashfold, M. N. R. Exploring Norrish type I and type II reactions: an ab initio mechanistic study highlighting singlet-state mediated chemistry. Physical Chemistry Chemical Physics 21, 14418-14428 (2019). doi: 10.1039/C8CP07292B
[10] Green, W. A. Industrial Photoinitiators: A Technical Guide. (Boca Raton: CRC Press, 2010).
[11] Ligon, S. C. et al. Polymers for 3D printing and customized additive manufacturing. Chemical Reviews 117, 10212-10290 (2017). doi: 10.1021/acs.chemrev.7b00074
[12] Kitano, H. et al. Unexpected visible-light-induced free radical photopolymerization at low light intensity and high viscosity using a titanocene photoinitiator. Journal of Applied Polymer Science 128, 611-618 (2013). doi: 10.1002/app.38259
[13] Giacoletto, N., Ibrahim-Ouali, M. & Dumur, F. Recent advances on squaraine-based photoinitiators of polymerization. European Polymer Journal 150, 110427 (2021). doi: 10.1016/j.eurpolymj.2021.110427
[14] Dumur, F. Recent advances on pyrene-based photoinitiators of polymerization. European Polymer Journal 126, 109564 (2020). doi: 10.1016/j.eurpolymj.2020.109564
[15] Noirbent, G. & Dumur, F. Photoinitiators of polymerization with reduced environmental impact: nature as an unlimited and renewable source of dyes. European Polymer Journal 142, 110109 (2021). doi: 10.1016/j.eurpolymj.2020.110109
[16] Barachevsky, V. A. Advances in photonics of organic photochromism. Journal of Photochemistry and Photobiology A:Chemistry 354, 61-69 (2018). doi: 10.1016/j.jphotochem.2017.06.034
[17] Zhang, J. J., Zou, Q. & Tian, H. Photochromic materials: more than meets the eye. Advanced Materials 25, 378-399 (2013). doi: 10.1002/adma.201201521
[18] Samanta, S. & Locklin, J. Formation of photochromic spiropyran polymer brushes via surface-initiated, ring-opening metathesis polymerization: reversible photocontrol of wetting behavior and solvent dependent morphology changes. Langmuir 24, 9558-9565 (2008). doi: 10.1021/la8017387
[19] Davis, D. A. et al. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459, 68-72 (2009). doi: 10.1038/nature07970
[20] Kortekaas, L. & Browne, W. R. The evolution of spiropyran: fundamentals and progress of an extraordinarily versatile photochrome. Chemical Society Reviews 48, 3406-3424 (2019). doi: 10.1039/C9CS00203K
[21] Zhang, Q., Qu, D. H. & Tian, H. Photo-regulated supramolecular polymers: shining beyond disassembly and reassembly. Advanced Optical Materials 7, 1900033 (2019). doi: 10.1002/adom.201900033
[22] Harada, J., Kawazoe, Y. & Ogawa, K. Photochromism of spiropyrans and spirooxazines in the solid state: low temperature enhances photocoloration. Chemical Communications 46, 2593-2595 (2010). doi: 10.1039/b925514a
[23] He, X. J. et al. Reversible spiropyran-based chemosensor with pH-switches and application for bioimaging in living cells, Pseudomonas aeruginosa and zebrafish. Dyes and Pigments 180, 108497 (2020). doi: 10.1016/j.dyepig.2020.108497
[24] Kim, D., Zhang, Z. Y. & Xu, K. Spectrally resolved super-resolution microscopy unveils multipath reaction pathways of single spiropyran molecules. Journal of the American Chemical Society 139, 9447-9450 (2017). doi: 10.1021/jacs.7b04602
[25] Klajn, R. Spiropyran-based dynamic materials. Chemical Society Reviews 43, 148-184 (2014). doi: 10.1039/C3CS60181A
[26] Piech, M. et al. Patterned colloid assembly by grafted photochromic polymer layers. Langmuir 22, 1379-1382 (2006). doi: 10.1021/la051636c
[27] Hu, C. L. et al. Visible light and temperature dual-responsive microgels by crosslinking of spiropyran modified prepolymers. Journal of Colloid and Interface Science 582, 1075-1084 (2021). doi: 10.1016/j.jcis.2020.08.081
[28] Zhu, L. Y. et al. Reversibly photoswitchable dual-color fluorescent nanoparticles as new tools for live-cell imaging. Journal of the American Chemical Society 129, 3524-3526 (2007). doi: 10.1021/ja068452k
[29] Dou, Q. Q. et al. Dual-responsive reversible photo/thermogelling polymers exhibiting high modulus change. Journal of Polymer Science Part A:Polymer Chemistry 54, 2837-2844 (2016). doi: 10.1002/pola.28191
[30] Corredor, C. C. et al. Photochromic polymer composites for two-photon 3D optical data storage. Chemistry of Materials 19, 5165-5173 (2007). doi: 10.1021/cm071336b
[31] Rodrı́guez, A. et al. Optical control of an integrated interferometer using a photochromic polymer. Applied Physics Letters 79, 461-463 (2001). doi: 10.1063/1.1384002
[32] Arsenov, V. D., Marevtsev, V. S. & Cherkashin, M. I. Synthesis and photochromic properties of spiropyrane polymers with electron-donor substituents. Polymer Science U. S. S. R 27, 2837-2843 (1985). doi: 10.1016/0032-3950(85)90526-X
[33] Berkovic, G., Krongauz, V. & Weiss, V. Spiropyrans and spirooxazines for memories and switches. Chemical Reviews 100, 1741-1754 (2000). doi: 10.1021/cr9800715
[34] Zhu, M. Q. et al. Reversible two-photon photoswitching and two-photon imaging of immunofunctionalized nanoparticles targeted to cancer cells. Journal of the American Chemical Society 133, 365-372 (2011). doi: 10.1021/ja106895k
[35] Liaros, N. et al. Elucidating complex triplet-state dynamics in the model system isopropylthioxanthone. iScience 25, 103600 (2021).
[36] Baldacchini, T. et al. Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization. Journal of Applied Physics 95, 6072-6076 (2004). doi: 10.1063/1.1728296
[37] Schafer, K. J. et al. Two-photon absorption cross-sections of common photoinitiators. Journal of Photochemistry and Photobiology A:Chemistry 162, 497-502 (2004). doi: 10.1016/S1010-6030(03)00394-0
[38] Bongiovanni, R. et al. Perfluoropolyether polymers by UV curing: design, synthesis and characterization. Polymer International 61, 65-73 (2012). doi: 10.1002/pi.3149
[39] Andrzejewska, E. et al. Heteroaromatic thiols as co-initiators for type II photoinitiating systems based on camphorquinone and isopropylthioxanthone. Macromolecules 39, 3777-3785 (2006). doi: 10.1021/ma060240k
[40] Norrish type II reaction in Comprehensive Organic Name Reactions and Reagents, Wang, Z. R. , Hoboken: John Wiley & Sons, Ltd, 2010, 2067-2071.
[41] Allen, N. S. Photoinitiators for UV and visible curing of coatings: mechanisms and properties. Journal of Photochemistry and Photobiology A:Chemistry 100, 101-107 (1996). doi: 10.1016/S1010-6030(96)04426-7
[42] Li, F. S. et al. Kinetic investigations on the UV-induced photopolymerization of nanocomposites by FTIR spectroscopy. Journal of Applied Polymer Science 99, 1429-1436 (2006). doi: 10.1002/app.22629
[43] Fischer, E. & Hirshberg, Y. Formation of coloured forms of spiropyrans by low-temperature irradiation. Journal of the Chemical Society 4522-4524 (1952).
[44] Pottier, E. et al. Effets de substituant, d'hétéroatome et de solvant sur les cinétiques de décoloration thermique et les spectres d'absorption de photomérocyanines en série spiro[indoline-oxazine]. Helvetica Chimica Acta 73, 303-315 (1990). doi: 10.1002/hlca.19900730210
[45] Kellmann, A. et al. Photophysics and kinetics of two photochromic indolinospirooxazines and one indolinospironaphthopyran. Journal of Photochemistry and Photobiology A:Chemistry 49, 63-73 (1989). doi: 10.1016/1010-6030(89)87106-0
[46] Baillet, G., Giusti, G. & Guglielmetti, R. Comparative photodegradation study between spiro[indoline-oxazine] and spiro[indoline-pyran] derivatives in solution. Journal of Photochemistry and Photobiology A:Chemistry 70, 157-161 (1993). doi: 10.1016/1010-6030(93)85036-8
[47] Campredon, M. et al. ESR studies on some spiropyrans, spironaphthopyrans, and spirooxazines. Journal de Chimie Physique 91, 1830-1836 (1994).