[1] Jin, C. H. et al. Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 13, 994-1003 (2018).
[2] Merkl, P. et al. Ultrafast transition between exciton phases in van der Waals heterostructures. Nat. Mater. 18, 691-696 (2019). doi: 10.1038/s41563-019-0337-0
[3] Jiang, C. Y. et al. Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures. Nat. Commun. 9, 753 (2018). doi: 10.1038/s41467-018-03174-3
[4] Combescot, M., Combescot, R. & Dubin, F. Bose-Einstein condensation and indirect excitons: a review. Rep. Prog. Phys. 80, 066501 (2017). doi: 10.1088/1361-6633/aa50e3
[5] High, A. A. et al. Control of exciton fluxes in an excitonic integrated circuit. Science 321, 229-231 (2008). doi: 10.1126/science.1157845
[6] Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246-252 (2018). doi: 10.1038/s41565-017-0035-5
[7] Xia, J. et al. Strong coupling and pressure engineering in WSe2-MoSe2 heterobilayers. Nat. Phys. 17, 92-98 (2021). doi: 10.1038/s41567-020-1005-7
[8] Mak, K. F. & Shan, J. Opportunities and challenges of interlayer exciton control and manipulation. Nat. Nanotechnol. 13, 974-976 (2018). doi: 10.1038/s41565-018-0301-1
[9] Unuchek, D. et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 560, 340-344 (2018). doi: 10.1038/s41586-018-0357-y
[10] Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004-1015 (2018). doi: 10.1038/s41565-018-0193-0
[11] Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81-86 (2019). doi: 10.1038/s41586-019-0986-9
[12] Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71-75 (2019). doi: 10.1038/s41586-019-0975-z
[13] Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66-70 (2019). http://arxiv.org/abs/1809.04562
[14] Yuan, L. et al. Twist-angle-dependent interlayer exciton diffusion in WS2-WSe2 heterobilayers. Nat. Mater. 19, 617-623 (2020). doi: 10.1038/s41563-020-0670-3
[15] Choi, J. et al. Moiré potential impedes interlayer exciton diffusion in van der Waals heterostructures. Sci. Adv. 6, eaba8866 (2020). doi: 10.1126/sciadv.aba8866
[16] Wang, Z. F. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76-80 (2019). doi: 10.1038/s41586-019-1591-7
[17] Jiang, Y. et al. Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures. Light Sci. Appl. 10, 72 (2021). http://www.nature.com/articles/s41377-021-00500-1