[1] Hua, H. & Javidi, B. Augmented reality: easy on the eyes. Optics and Photonics News 26, 26-33 (2015).
[2] Van Krevelen, D. W. F. & Poelman, R. A survey of augmented reality technologies, applications and limitations. International Journal of Virtual Reality 9, 1-20 (2010).
[3] Azuma, R. et al. Recent advances in augmented reality. IEEE Computer Graphics and Applications 21, 34-47 (2001).
[4] Cakmakci, O. & Rolland, J. Head-worn displays: a review. Journal of Display Technology 2, 199-216 (2006). doi: 10.1109/JDT.2006.879846
[5] Kress, B., Saeedi, E. & Brac-de-la-Perriere, V. The segmentation of the HMD market: optics for smart glasses, smart eyewear, AR and VR headsets. Proceedings of SPIE 9202, Photonics Applications for Aviation, Aerospace, Commercial, and Harsh Environments V. San Diego, California, United States: SPIE, 2014, 92020D.
[6] Li, H. et al. Review and analysis of avionic helmet-mounted displays. Optical Engineering 52, 110901 (2013). doi: 10.1117/1.OE.52.11.110901
[7] Zhan, T. et al. Augmented reality and virtual reality displays: perspectives and challenges. iScience 23, 101397 (2020). doi: 10.1016/j.isci.2020.101397
[8] Tecchia, F. Fundamentals of wearable computers and augmented reality, second edition. Presence: Teleoperators and Virtual Environments 25, 78-79 (2016). doi: 10.1162/PRES_r_00244
[9] Armitage, D., Underwood, I. & Wu, S. T. Introduction to Microdisplays. (Hoboken, NJ: Wiley, 2006).
[10] Bichlmeier, C. et al. Contextual anatomic mimesis hybrid in-situ visualization method for improving multi-sensory depth perception in medical augmented reality. Proceedings of the 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. Nara, Japan: IEEE, 2007, 129-138.
[11] Sielhorst, T. Feuerstein, M. & Navab, N. Advanced medical displays: a literature review of augmented reality. Journal of Display Technology 4, 451-467 (2008). doi: 10.1109/JDT.2008.2001575
[12] Sisodia, A., Riser, A. & Rogers, J. R. Design of an advanced helmet mounted display (AHMD). Proceedings of SPIE 5801, Cockpit and Future Displays for Defense and Security. Orlando, Florida, United States: SPIE, 2005, 304-315.
[13] Elia, V., Gnoni, M. G. & Lanzilotto, A. Evaluating the application of augmented reality devices in manufacturing from a process point of view: an AHP based model. Expert Systems with Applications 63, 187-197 (2016). doi: 10.1016/j.eswa.2016.07.006
[14] He, J. B. et al. Texting while driving using Google GlassTM: promising but not distraction-free. Accident Analysis & Prevention 81, 218-229 (2015).
[15] Amitai, Y., Reinhorn, S. & Friesem, A. A. Visor-display design based on planar holographic optics. Applied Optics 34, 1352-1356 (1995). doi: 10.1364/AO.34.001352
[16] Michael, J. K. Fundamentals of Optical Design. (SPIE Press, 2001).
[17] Supranowitz, C. et al. Fabrication and metrology of high-precision freeform surfaces. Proceedings of SPIE 8884, Optifab 2013. Rochester, New York, United States: SPIE, 2013, 888411-1.
[18] Yang, T., Jin G. F. & Zhu, J. Automated design of freeform imaging systems. Light:Science & Applications 6, e17081 (2017).
[19] Wei, L. D. et al. Design and fabrication of a compact off-axis see-through head-mounted display using a freeform surface. Optics Express 26, 8550-8565 (2018). doi: 10.1364/OE.26.008550
[20] Tang, R. R. et al. Multiple surface expansion method for design of freeform imaging systems. Optics Express 26, 2983-2994 (2018). doi: 10.1364/OE.26.002983
[21] Cakmakci, O. et al. Optimal local shape description for rotationally non-symmetric optical surface design and analysis. Optics Express 16, 1583-1589 (2008). doi: 10.1364/OE.16.001583
[22] Zheng Z. R. et al. Design and fabrication of an off-axis see-through head-mounted display with an x-y polynomial surface. Applied Optics 49, 3661-3668 (2010). doi: 10.1364/AO.49.003661
[23] Google Glasses AR-HMD product. At https://www.google.com/glass/start/.
[24] Meta 2 - Virtual Reality and Augmented Reality Wiki - VR AR & XR Wiki. At https://xinreality.com/wiki/Meta_2.
[25] Takahashi, K. Head or face mounted image display apparatus. (1995).
[26] Okuyama, A. & Yamazaki, S. Optical system, and image observing apparatus and image pickup apparatus using it. (1996).
[27] Cheng, D. W. et al. Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism. Applied Optics 48, 2655-2668 (2009). doi: 10.1364/AO.48.002655
[28] Cheng, D. W. et al. Design of a wide-angle, lightweight head-mounted display using free-form optics tiling. Optics Letters 36, 2098-2100 (2011). doi: 10.1364/OL.36.002098
[29] Freeform AR-HMD optical module with a diagonal FOV of 120°. at http://www.nedplusar.com/index/chanpin_xq/cid/49/sid/63/goods_id/49.html.
[30] Takashi, M., Hiroshi, A. & Katsumasa, S. Development of non-contact profile sensor for 3-D Free-form surfaces (1st Report). Journal of the Japan Society for Precision Engineering 58, 1886-1892 (1992). doi: 10.2493/jjspe.58.1886
[31] Heinrich, M. J. & Kim, E. Wearable display device. (2014).
[32] Levola, T. & Laakkonen, P. Replicated slanted gratings with a high refractive index material for in and outcoupling of light. Optics Express 15, 2067-2074 (2007). doi: 10.1364/OE.15.002067
[33] Kress, B. C. Optical waveguide combiners for AR headsets: features and limitations. Proceedings SPIE 11062, Digital Optical Technologies 2019. Munich, Germany: SPIE, 2019, 110620J.
[34] Weng, Y. S. et al. Polarization volume grating with high efficiency and large diffraction angle. Optics Express 24, 17746-17759 (2016). doi: 10.1364/OE.24.017746
[35] Lee, Y., Yin, K. & Wu, S. T. Reflective polarization volume gratings for high efficiency waveguide-coupling augmented reality displays. Optics Express 25, 27008-27014 (2017). doi: 10.1364/OE.25.027008
[36] Lee, G. Y. et al. Metasurface eyepiece for augmented reality. Nature Communications 9, 4562 (2018). doi: 10.1038/s41467-018-07011-5
[37] Hong, C. C., Colburn, S. & Majumdar, A. Flat metaform near-eye visor. Applied Optics 56, 8822-8827 (2017). doi: 10.1364/AO.56.008822
[38] Daystar G2 AR-HMD product: Lenovo Research | Committed to Lenovo's mixed reality and computer vision technology. At https://www.lenovo-mr.com/g2.html.
[39] Maiti, S. N., Saroop, U. K. & Misra, A. Studies on polyblends of poly(vinyl chloride) and acrylonitrile-butadiene-styrene terpolymer. Polymer Engineering and Science 32, 27-35 (1992). doi: 10.1002/pen.760320106
[40] Church, E. L. & Zavada, J. M. Residual surface roughness of diamond-turned optics. Applied Optics 14, 1788-1795 (1975). doi: 10.1364/AO.14.001788
[41] Cheng, M. N. et al. Theoretical and experimental analysis of Nano-surface generation in ultra-precision raster milling. International Journal of Machine Tools and Manufacture 48, 1090-1102 (2008). doi: 10.1016/j.ijmachtools.2008.02.006
[42] Brecher, C. et al. NURBS based ultra-precision free-form machining. CIRP Annals 55, 547-550 (2006). doi: 10.1016/S0007-8506(07)60479-X
[43] Brinksmeier, E. et al. Submicron functional surfaces generated by diamond machining. CIRP Annals 59, 535-538 (2010). doi: 10.1016/j.cirp.2010.03.037
[44] Lu, X. H. & Khim, L. S. A statistical experimental study of the injection molding of optical lenses. Journal of Materials Processing Technology 113, 189-195 (2001). doi: 10.1016/S0924-0136(01)00606-9
[45] Contact 3-D Profilometer: UA3P37. At https://industrial.panasonic.com/ww/products/pt/measuring-system/3d-profilometers.
[46] Non-contact 3D Optical Profilers: interferometer LUPHO Scan. At https://www.taylor-hobson.com/products/non-contact-3d-optical-profilers.
[47] Wang, Q. W. et al. Stray light and tolerance analysis of an ultrathin waveguide display. Applied Optics 54, 8354-8362 (2015). doi: 10.1364/AO.54.008354
[48] Yang, J. M. et al. Design of a large field-of-view see-through near to eye display with two geometrical waveguides. Optics Letters 41, 5426-5429 (2016). doi: 10.1364/OL.41.005426
[49] Hung, H. C. et al. Optical design of a compact see-through head-mounted display with light guide plate. SID Symposium Digest of Technical Papers 45, 293-296 (2014). doi: 10.1002/j.2168-0159.2014.tb00079.x
[50] Zhao, K. W. & Pan, J. W. Optical design for a see-through head-mounted display with high visibility. Optics Express 24, 4749-4760 (2016). doi: 10.1364/OE.24.004749
[51] Cheng, D. W. et al. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics. Optics Express 22, 20705-20719 (2014). doi: 10.1364/OE.22.020705
[52] The optical module of Lumus OE sleek. At https://lumusvision.com/products/oe-sleek/.
[53] Epson AR-HMD product. At https://phys.org/news/2016-02-world-lightest-oled-binocular-see-through.html.
[54] Optinvent AR-HMD product. At http://www.optinvent.com/our_products/ora-2/.
[55] Hou, Q. C. et al. Geometrical waveguide in see-through head-mounted display: a review. Proceedings of SPIE 10021, Optical Design and Testing VII. Beijing, China: SPIE, 2016.
[56] Liu, Z. Y. et al. Design of a uniform-illumination binocular waveguide display with diffraction gratings and freeform optics. Optics Express 25, 30720-30731 (2017). doi: 10.1364/OE.25.030720
[57] Liu, A. et al. Diffraction efficiency distribution of output grating in holographic waveguide display system. IEEE Photonics Journal 10, 7000310 (2018).
[58] Xiao, J. S. et al. Design of achromatic surface microstructure for near-eye display with diffractive waveguide. Optics Communications 452, 411-416 (2019). doi: 10.1016/j.optcom.2019.04.004
[59] Liu, Z. Y. et al. A full-color near-eye augmented reality display using a tilted waveguide and diffraction gratings. Optics Communications 431, 45-50 (2019). doi: 10.1016/j.optcom.2018.09.011
[60] Moharam, M. G. & Gaylord, T. K. Rigorous coupled-wave analysis of planar-grating diffraction. Journal of the Optical Society of America 71, 811-818 (1981). doi: 10.1364/JOSA.71.000811
[61] Moharam, M. G. et al. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. Journal of the Optical Society of America A 12, 1068-1076 (1995). doi: 10.1364/JOSAA.12.001068
[62] Moharam, M. G. et al. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach. Journal of the Optical Society of America A 12, 1077-1086 (1995). doi: 10.1364/JOSAA.12.001077
[63] Levola, T. Diffractive optics for virtual reality displays. Journal of the Society for Information Display 14, 467-475 (2006). doi: 10.1889/1.2206112
[64] Kress, B. C. & Cummings, W. J. 11‐1: invited paper: towards the ultimate mixed reality experience: HoloLens display architecture choices. SID Symposium Digest of Technical Papers 48, 127-131 (2017). doi: 10.1002/sdtp.11586
[65] Saarikko, P. Diffractive exit-pupil expander with a large field of view. Proceedings SPIE 7001, Photonics in Multimedia II. Strasbourg, France: SPIE, 2008, 700105.
[66] Eisen, L. et al. Planar configuration for image projection. Applied Optics 45, 4005-4011 (2006). doi: 10.1364/AO.45.004005
[67] Amitai, Y. & Friesem, A. Holographic optical devices. (2003).
[68] Zhang, Y. & Fang, F. Z. Development of planar diffractive waveguides in optical see-through head-mounted displays. Precision Engineering 60, 482-496 (2019). doi: 10.1016/j.precisioneng.2019.09.009
[69] Bohn, D. Microsoft’s HoloLens 2: A $3, 500 mixed reality headset for the factory, not the living room. (2019). At https://www.theverge.com/2019/2/24/18235460/microsoft-hololens-2-price-specs-mixed-reality-ar-vr-business-work-features-mwc-2019/.
[70] Schowengerdt, B. T., Lin, D. M. & St. Hilaire, P. Multi-layer diffractive eyepiece. (2018).
[71] WaveOptics. Wave optics product. At https://enhancedworld.com/products/modules/.
[72] De Beaucoudrey, N. et al. Design and fabrication of high-efficiency inclined binary high-frequency gratings. Proceedings SPIE 2775, Specification, Production, and Testing of Optical Components and Systems. Glasgow, United Kingdom: SPIE, 1996, 533-537.
[73] Miller, J. M. Synthesis of pulse-width-modulated and inclined binary high-frequency diffractive optical elements. Proceedings SPIE 2652, Practical Holography X. San Jose, CA, United States: SPIE, 1996, 182-187.
[74] Miller, J. M. et al. Synthesis of a subwavelength-pulse-width spatially modulated array illuminator for 0.633μm. Optics Letters 21, 1399-1402 (1996). doi: 10.1364/OL.21.001399
[75] Miller, J. M. et al. Design and fabrication of binary slanted surface-relief gratings for a planar optical interconnection. Applied Optics 36, 5717-5727 (1997). doi: 10.1364/AO.36.005717
[76] Guo, J. L. Nanoimprint lithography: methods and material requirements. Advanced Materials 19, 495-513 (2007). doi: 10.1002/adma.200600882
[77] Heidar, B. et al. Pattern replication with intermediate stamp. (2010).
[78] Shechter, R. et al. Compact red–green–blue beam illuminator and expander. Applied Optics 41, 1229-1235 (2002). doi: 10.1364/AO.41.001229
[79] Peng H. C. et al. Design and fabrication of a holographic head-up display with asymmetric field of view. Applied Optics 53, 29 (2014). doi: 10.1364/AO.53.000D29
[80] Weng, Y. S., Zhang, Y. N. & Li, X. H. 3‐3: study on the field of view properties for a holographic waveguide display system. SID Symposium Digest of Technical Papers 47, 7-10 (2016). doi: 10.1002/sdtp.10584
[81] Kogelnik, H. Coupled wave theory for thick hologram gratings. Bell Labs Technical Journal 48, 2909-2947 (2013).
[82] Kamiya, N. Rigorous coupled-wave analysis for practical planar dielectric gratings: 1. thickness-changed holograms and some characteristics of diffraction efficiency. Applied Optics 37, 5843-5853 (1998). doi: 10.1364/AO.37.005843
[83] Amitai, Y., Friesem, A. A. & Weiss, V. Holographic elements with high efficiency and low aberrations for helmet displays. Applied Optics 28, 3405-3416 (1989). doi: 10.1364/AO.28.003405
[84] Cameron, A. The application of holographic optical waveguide technology to the Q-Sight family of helmet-mounted displays. Proceedings of SPIE 7326, Head- and Helmet-Mounted Displays XIV: Design and Applications. Orlando, Florida, United States: SPIE, 2009, 73260H.
[85] Mukawa, H. et al. A full-color eyewear display using planar waveguides with reflection volume holograms. Journal of the Society for Information Display 17, 185-193 (2009). doi: 10.1889/JSID17.3.185
[86] Oku, T. et al. 15.2: high-luminance see-through eyewear display with novel volume hologram waveguide technology. SID Symposium Digest of Technical Papers 46, 192-195 (2015). doi: 10.1002/sdtp.10308
[87] SONY. Developer tools- Sony developer world. At https://developer.sony.com/zh/develop/smarteyeglass-sed-e1/.
[88] Liu, A. et al. High refractive index photopolymer fabricated holographic grating used for RGB waveguide-type display. SID Symposium Digest of Technical Papers 50, 1042-1044 (2019). doi: 10.1002/sdtp.13105
[89] Malallah, R. et al. Improving the uniformity of holographic recording using multilayer photopolymer. Part I. Theoretical analysis. Journal of the Optical Society of America A 36, 320-333 (2019). doi: 10.1364/JOSAA.36.000320
[90] Liu, Y. et al. Volume holographic recording in al nanoparticles dispersed phenanthrenequinone-doped poly(methyl methacrylate) photopolymer. Nanotechnology 30, 145202 (2019). doi: 10.1088/1361-6528/aaf070
[91] Waldern, J. D., Morad, R. & Popovich, M. Waveguide manufacturing for AR displays: past, present and future. SID Symposium Digest of Technical Papers 50, 112-115 (2019). doi: 10.1002/sdtp.12868
[92] Yoshida, T. et al. A plastic holographic waveguide combiner for light‐weight and highly‐transparent augmented reality glasses. Journal of the Society for Information Display 26, 280-286 (2018). doi: 10.1002/jsid.659
[93] Vorzobova, N. & Sokolov, P. Application of photopolymer materials in holographic technologies. Polymers 11, 2020 (2019). doi: 10.3390/polym11122020
[94] Tan, G. J. et al. Foveated imaging for near-eye displays. Optics Express 26, 25076-25085 (2018). doi: 10.1364/OE.26.025076
[95] Zhan, T. et al. Pancharatnam-Berry optical elements for head-up and near-eye displays [Invited]. Journal of the Optical Society of America B 36, D52-D65 (2019). doi: 10.1364/JOSAB.36.000D52
[96] Oh, C. & Escuti, M. J. Numerical analysis of polarization gratings using the finite-difference time-domain method. Physical Review A 76, 043815 (2007). doi: 10.1103/PhysRevA.76.043815
[97] Oh, C. & Escuti, M. J. Achromatic diffraction from polarization gratings with high efficiency. Optics Letters 33, 2287-2289 (2008). doi: 10.1364/OL.33.002287
[98] Komanduri, R. K., Lawler, K. F. & Escuti, M. J. Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers. Optics Express 21, 404-420 (2013). doi: 10.1364/OE.21.000404
[99] Chen, H. W. et al. Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate. Optics Express 24, 7287-7298 (2016). doi: 10.1364/OE.24.007287
[100] Kobashi, J., Yoshida, H. & Ozaki, M. Planar optics with patterned chiral liquid crystals. Nature Photonics 10, 389-392 (2016). doi: 10.1038/nphoton.2016.66
[101] Wang, J. R. et al. Effects of humidity and surface on photoalignment of brilliant yellow. Liquid Crystals 44, 863-872 (2017). doi: 10.1080/02678292.2016.1247479
[102] Weng, Y. S. et al. Liquid-crystal-based polarization volume grating applied for full-color waveguide displays. Optics Letters 43, 5773-5776 (2018). doi: 10.1364/OL.43.005773
[103] Liu, L. X. et al. Broad band metasurfaces with simultaneous control of phase and amplitude. Advanced Materials 26, 5031-5036 (2014). doi: 10.1002/adma.201401484
[104] Lee, G. Y., Sung, J. & Lee, B. Recent advances in metasurface hologram technologies (Invited paper). ETRI Journal 41, 10-22 (2019). doi: 10.4218/etrij.2018-0532
[105] Lee, G. Y., Sung, J. & Lee, B. Metasurface optics for imaging applications. MRS Bulletin 45, 202-209 (2020). doi: 10.1557/mrs.2020.64
[106] Arbabi, A. et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nature Communications 7, 13682 (2016). doi: 10.1038/ncomms13682
[107] Lin, R. J. et al. Achromatic metalens array for full-colour light-field imaging. Nature Nanotechnology 14, 227-231 (2019). doi: 10.1038/s41565-018-0347-0
[108] Chen, W. T. et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nature Communications 10, 355 (2019). doi: 10.1038/s41467-019-08305-y
[109] Kim, C., Kim, S. J. & Lee, B. Doublet metalens design for high numerical aperture and simultaneous correction of chromatic and monochromatic aberrations. Optics Express 28, 18059-18076 (2020). doi: 10.1364/OE.387794
[110] Han, J. et al. Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms. Optics Express 23, 3534-3549 (2015). doi: 10.1364/OE.23.003534
[111] Zhan, T. et al. Multifocal displays: review and prospect. PhotoniX 1, 10 (2020). doi: 10.1186/s43074-020-00010-0
[112] Huan, Y. G. et al. Mini-LED, Micro-LED and OLED displays: present status and future perspectives. Light:Science & Applications 9, 105 (2020).