[1] Born, M. & Wolf, E. Principles of Optics 7th edn. (Cambridge University Press, New York, 1999).
[2] Jackson, J. D. Classical Electrodynamics 3rd edn. (Wiley, New York, 1999).
[3] Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).
[4] Mishchenko, M. I., Travis, L. D. & Lacis, A. A. Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge, 2002).
[5] Karlovets, D. V., Kotkin, G. L., Serbo, V. G. & Surzhykov, A. Scattering of twisted electron wave packets by atoms in the Born approximation. Phys. Rev. A 95, 032703 (2017). doi: 10.1103/PhysRevA.95.032703
[6] Newton, R. G. Optical theorem and beyond. Am. J. Phys. 44, 639–642 (1976). doi: 10.1119/1.10324
[7] Lock, J. A., Hodges, J. T. & Gouesbet, G. Failure of the optical theorem for Gaussian-beam scattering by a spherical particle. J. Opt. Soc. Am. A 12, 2708–2715 (1995). doi: 10.1364/JOSAA.12.002708
[8] Şendur, K. & Şahinöz, A. Interaction of radially polarized focused light with a prolate spheroidal nanoparticle. Opt. Express 17, 10910–10925 (2009). doi: 10.1364/OE.17.010910
[9] Normatov, A. et al. Efficient coupling and field enhancement for the nano-scale: plasmonic needle. Opt. Express 18, 14079–14086 (2010). doi: 10.1364/OE.18.014079
[10] Lerman, G. M., Yanai, A. & Levy, U. Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light. Nano. Lett. 9, 2139–2143 (2009). doi: 10.1021/nl900694r
[11] Chen, W. B., Abeysinghe, D. C., Nelson, R. L. & Zhan, Q. W. Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination. Nano. Lett. 9, 4320–4325 (2009). doi: 10.1021/nl903145p
[12] Marengo, E. A. & Tu, J. Optical theorem for transmission lines. Prog. Electromagn. Res. B 61, 253–268 (2014). doi: 10.2528/PIERB14090905
[13] Marengo, E. A. & Tu, J. Generalized optical theorem in the time domain. Prog. Electromagn. Res. B 65, 1–18 (2016). doi: 10.2528/PIERB15110506
[14] Marengo, E. A. A new theory of the generalized optical theorem in anisotropic media. IEEE Trans. Antennas Propagat 61, 2164–2179 (2013). doi: 10.1109/TAP.2012.2233702
[15] Dacol, D. K. & Roy, D. G. Generalized optical theorem for scattering in inhomogeneous media. Phys. Rev. E 72, 036609 (2005). doi: 10.1103/PhysRevE.72.036609
[16] Halliday, D. & Curtis, A. Generalized optical theorem for surface waves and layered media. Phys. Rev. E 79, 056603 (2008). doi: 10.1103/PhysRevE.79.056603
[17] Carney, P. S. The optical cross-section theorem with incident fields containing evanescent components. J. Mod. Opt. 46, 891–899 (1999). doi: 10.1080/09500349908231311
[18] Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972). doi: 10.1103/PhysRevB.6.4370
[19] Mojarad, N. M. & Agio, M. Tailoring the excitation of localized surface plasmon-polariton resonances by focusing radially-polarized beams. Opt. Express 17, 117–122 (2009). doi: 10.1364/OE.17.000117
[20] Gouesbet, G., Lock, J. A. & Gréhan, G. Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review. J. Quant. Spectrosc. Radiat. Transf. 112, 1–27 (2011). doi: 10.1016/j.jqsrt.2010.08.012
[21] Parsons, J., Burrows, C. P., Sambles, J. R. & Barnes, W. L. A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures. J. Mod. Opt. 57, 356–365 (2010). doi: 10.1080/09500341003628702
[22] Stratton, J. A. & Chu, L. J. Diffraction theory of electromagnetic waves. Phys. Rev. 56, 99–107 (1939). doi: 10.1103/PhysRev.56.99
[23] Kapitanova, P. V. et al. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes. Nat. Commun. 5, 3226 (2014). doi: 10.1038/ncomms4226
[24] Balanis, C. A. Antenna Theory: Analysis and Design 3rd edn (Wiley-Interscience, New York, 2005).
[25] Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photonics 9, 796–808 (2015). doi: 10.1038/nphoton.2015.201
[26] Martínez-Herrero, R., Mejías, P. M., Juvells, I. & Carnicer, A. Transverse and longitudinal components of the propagating and evanescent waves associated to radially polarized nonparaxial fields. Appl. Phys. B 106, 151–159 (2012). doi: 10.1007/s00340-011-4720-z
[27] Lytle, D. R. II, Carney, P. S., Schotland, J. C. & Wolf, E. Generalized optical theorem for reflection, transmission, and extinction of power for electromagnetic fields. Phys. Rev. E 71, 056610 (2005). doi: 10.1103/PhysRevE.71.056610
[28] Liou, K. N., Cai, Q., Pollack, J. B. & Cuzzi, J. N. Light scattering by randomly oriented cubes and parallelepipeds. Appl. Opt. 22, 3001–3008 (1983). doi: 10.1364/AO.22.003001
[29] Orlov, S., Peschel, U., Bauer, T. & Banzer, P. Analytical expansion of highly focused vector beams into vector spherical harmonics and its application to Mie scattering. Phys. Rev. A 85, 063825 (2012). doi: 10.1103/PhysRevA.85.063825
[30] O'Connor, D., Ginzburg, P., Rodríguez-Fortuño, F. J., Wurtz, G. A. & Zayats, A. V. Spin–orbit coupling in surface plasmon scattering by nanostructures. Nat. Commun. 5, 5327 (2014). doi: 10.1038/ncomms6327
[31] Rodríguez-Fortuño, F. J., Engheta, N., Martínez, A. & Zayats, A. V. Lateral forces on circularly polarizable particles near a surface. Nat. Commun. 6, 8799 (2015). doi: 10.1038/ncomms9799
[32] Karlovets, D. V., Kotkin, G. L. & Serbo, V. G. Scattering of wave packets on atoms in the Born approximation. Phys. Rev. A 92, 052703 (2015). doi: 10.1103/PhysRevA.92.052703
[33] Taylor, J. R. Scattering Theory: The Quantum Theory of Nonrelativistic Collisions (Dover Publications Inc., New York, 2006).