[1] Han, T. C., Bai, X., Thong, J. T. L., Li, B. W. & Qiu, C. W. Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials. Adv. Mater. 26, 1731–1734 (2014). doi: 10.1002/adma.201304448
[2] Phan, L. et al. Reconfigurable infrared camouflage coatings from a cephalopod protein. Adv. Mater. 25, 5621–5625 (2013). doi: 10.1002/adma.201301472
[3] Yu, C. J. et al. Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins. Proc. Natl Acad. Sci. USA 111, 12998–13003 (2014). doi: 10.1073/pnas.1410494111
[4] Wang, G. P., Chen, X. C., Liu, S., Wong, C. & Chu, S. Mechanical chameleon through dynamic real-time plasmonic tuning. ACS Nano 10, 1788–1794 (2016). doi: 10.1021/acsnano.5b07472
[5] Mäthger, L. M., Denton, E. J., Marshall, N. J. & Hanlon, R. T. Mechanisms and behavioural functions of structural coloration in cephalopods. J. R. Soc. Interface 6, S149–S163 (2009). doi: 10.1098/rsif.2008.0366.focus
[6] Teyssier, J., Saenko, S. V., Marel, D. & Milinkovitch, M. C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 6, 6368 (2015). doi: 10.1038/ncomms7368
[7] Albertoni A. Long wave infrared metamaterials and nano-materials design, simulation, and laboratory test for target camouflage in the defence application. In Proc. SPIE Electro-Optical and Infrared Systems: Technology and Applications VIII Volume 8185, pp 818509 (SPIE, Prague, Czech Republic, 2011).
[8] Greffet, J. J. et al. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002). doi: 10.1038/416061a
[9] Schuller, J. A., Taubner, T. & Brongersma, M. L. Optical antenna thermal emitters. Nat. Photonics 3, 658–661 (2009). doi: 10.1038/nphoton.2009.188
[10] Diem, M., Koschny, T. & Soukoulis, C. M. Wide-angle perfect absorber/thermal emitter in the terahertz regime. Phys. Rev. B 79, 033101 (2009). doi: 10.1103/PhysRevB.79.033101
[11] Mason, J. A., Smith, S. & Wasserman, D. Strong absorption and selective thermal emission from a midinfrared metamaterial. Appl. Phys. Lett. 98, 241105 (2011). doi: 10.1063/1.3600779
[12] Liu, X. L. et al. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107, 045901 (2011). doi: 10.1103/PhysRevLett.107.045901
[13] Makhsiyan, M., Bouchon, P., Jaeck, J., Pelouard, J. L. & Haïdar, R. Shaping the spatial and spectral emissivity at the diffraction limit. Appl. Phys. Lett. 107, 251103 (2015). doi: 10.1063/1.4937453
[14] Roberts, A. S., Chirumamilla, M., Thilsing-Hansen, K., Pedersen, K. & Bozhevolnyi, S. I. Near-infrared tailored thermal emission from wafer-scale continuous-film resonators. Opt. Express 23, A1111–A1119 (2015). doi: 10.1364/OE.23.0A1111
[15] Liu, J. J. et al. Quasi-coherent thermal emitter based on refractory plasmonic materials. Opt. Mater. Express 5, 2721–2728 (2015). doi: 10.1364/OME.5.002721
[16] Costantini, D. et al. Plasmonic metasurface for directional and frequency-selective thermal emission. Phys. Rev. Appl. 4, 014023 (2015). doi: 10.1103/PhysRevApplied.4.014023
[17] Park, J. H., Han, S. E., Nagpal, P. & Norris, D. J. Observation of thermal beaming from tungsten and molybdenum bull's eyes. ACS Photonics 3, 494–500 (2016). doi: 10.1021/acsphotonics.6b00022
[18] Liao, C. Y. et al. Quasi-coherent thermal radiation with multiple resonant plasmonic cavities. Appl. Phys. Lett. 109, 261101 (2016). doi: 10.1063/1.4972965
[19] Huang, W. L., Hsiao, H. H., Tang, M. R. & Lee, S. C. Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement. Appl. Phys. Lett. 109, 063107 (2016). doi: 10.1063/1.4960664
[20] Ilic, O. et al. Tailoring high-temperature radiation and the resurrection of the incandescent source. Nat. Nanotechnol. 11, 320–324 (2016). doi: 10.1038/nnano.2015.309
[21] Liu, B. A., Gong, W., Yu, B. W., Li, F. P. & Shen, S. Perfect thermal emission by nanoscale transmission line resonators. Nano Lett. 17, 666–672 (2017). doi: 10.1021/acs.nanolett.6b03616
[22] Yang, Z. Y. et al. Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons. ACS Photonics 4, 2212–2219 (2017). doi: 10.1021/acsphotonics.7b00408
[23] Zhou, M. et al. Analog of superradiant emission in thermal emitters. Phys. Rev. B 92, 024302 (2015). doi: 10.1103/PhysRevB.92.024302
[24] Zhang, X., Liu, H., Zhang, Z. G., Wang, Q. & Zhu, S. N. Controlling thermal emission of phonon by magnetic metasurfaces. Sci. Rep. 7, 41858 (2017). doi: 10.1038/srep41858
[25] Raman, A. P., Anoma, M. A., Zhu, L. X., Rephaeli, E. & Fan, S. H. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014). doi: 10.1038/nature13883
[26] Zhu, L. X., Raman, A. P. & Fan, S. H. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. Proc. Natl Acad. Sci. USA 112, 12282–12287 (2015). doi: 10.1073/pnas.1509453112
[27] Hsu, P. C. et al. Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016). doi: 10.1126/science.aaf5471
[28] Zhai, Y. et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017). doi: 10.1126/science.aai7899
[29] Nagpal, P., Han, S. E., Stein, A. & Norris, D. J. Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals. Nano Lett. 8, 3238–3243 (2008). doi: 10.1021/nl801571z
[30] Chan, W. R. et al. Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics. Proc. Natl Acad. Sci. USA 110, 5309–5314 (2013). doi: 10.1073/pnas.1301004110
[31] Lenert, A. et al. A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol. 9, 126–130 (2014). doi: 10.1038/nnano.2013.286
[32] Rinnerbauer, V. et al. Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics. Adv. Energy Mater. 4, 1400334 (2014). doi: 10.1002/aenm.201400334
[33] Zhou, J., Chen, X. & Guo, L. J. Efficient thermal-light interconversions based on optical topological transition in the metal-dielectric multilayered metamaterials. Adv. Mater. 28, 3017–3023 (2016). doi: 10.1002/adma.201505451
[34] Dyachenko, P. N. et al. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions. Nat. Commun. 7, 11809 (2016). doi: 10.1038/ncomms11809
[35] Asano, T. et al. Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor. Sci. Adv. 2, e1600499 (2016). doi: 10.1126/sciadv.1600499
[36] Miyazaki, H. T. et al. Dual-band infrared metasurface thermal emitter for CO2 sensing. Appl. Phys. Lett. 105, 121107 (2014). doi: 10.1063/1.4896545
[37] Lochbaum, A. et al. On-chip narrowband thermal emitter for mid-IR optical gas sensing. ACS Photonics 4, 1371–1380 (2017). doi: 10.1021/acsphotonics.6b01025
[38] Brar, V. W. et al. Electronic modulation of infrared radiation in graphene plasmonic resonators. Nat. Commun. 6, 7032 (2015). doi: 10.1038/ncomms8032
[39] Inoue, T., De Zoysa, M., Asano, T. & Noda, S. Realization of dynamic thermal emission control. Nat. Mater. 13, 928–931 (2014). doi: 10.1038/nmat4043
[40] Coppens, Z. J. & Valentine, J. G. Spatial and temporal modulation of thermal emission. Adv. Mater. 29, 1701275 (2017). doi: 10.1002/adma.201701275
[41] Liu, X. Y. & Padilla, W. J. Thermochromic infrared metamaterials. Adv. Mater. 28, 871–875 (2016). doi: 10.1002/adma.201504525
[42] Kats, M. A. et al. Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance. Phys. Rev. X 3, 041004 (2013).
[43] Xiao, L. et al. Fast adaptive thermal camouflage based on flexible VO2/graphene/CNT thin films. Nano Lett. 15, 8365–8370 (2015). doi: 10.1021/acs.nanolett.5b04090
[44] Yang, T. Z. et al. Invisible sensors: simultaneous sensing and camouflaging in multiphysical fields. Adv. Mater. 27, 7752–7758 (2015). doi: 10.1002/adma.201502513
[45] Li, Y., Bai, X., Yang, T. Z., Luo, H. L. & Qiu, C. W. Structured thermal surface for radiative camouflage. Nat. Commun. 9, 273 (2018). doi: 10.1038/s41467-017-02678-8
[46] Gholipour, B., Zhang, J. F., MacDonald, K. F., Hewak, D. W. & Zheludev, N. I. An all-optical, non-volatile, bidirectional, phase-change meta-switch. Adv. Mater. 25, 3050–3054 (2013). doi: 10.1002/adma.201300588
[47] Michel, A. K. U. et al. Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses. ACS Photonics 1, 833–839 (2014). doi: 10.1021/ph500121d
[48] Rios, C., Hosseini, P., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. On-chip photonic memory elements employing phase-change materials. Adv. Mater. 26, 1372–1377 (2014). doi: 10.1002/adma.201304476
[49] Hosseini, P., Wright, C. D. & Bhaskaran, H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511, 206–211 (2014). doi: 10.1038/nature13487
[50] Schlich, F. F., Zalden, P., Lindenberg, A. M. & Spolenak, R. Color switching with enhanced optical contrast in ultrathin phase-change materials and semiconductors induced by femtosecond laser pulses. ACS Photonics 2, 178–182 (2015). doi: 10.1021/ph500402r
[51] Tittl, A. et al. A switchable mid-Infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv. Mater. 27, 4597–4603 (2015). doi: 10.1002/adma.201502023
[52] Hira, T. et al. All-optical switching of localized surface plasmon resonance in single gold nanosandwich using GeSbTe film as an active medium. Appl. Phys. Lett. 106, 031105 (2015). doi: 10.1063/1.4906037
[53] Ríos, C. et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photonics 9, 725–732 (2015). doi: 10.1038/nphoton.2015.182
[54] Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 10, 60–65 (2015). doi: 10.1038/nphoton.2015.247
[55] Yoo, S., Gwon, T., Eom, T., Kim, S. & Hwang, C. S. Multicolor changeable optical coating by adopting multiple layers of ultrathin phase change material film. ACS Photonics 3, 1265–1270 (2016). doi: 10.1021/acsphotonics.6b00246
[56] Rudé, M. et al. Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials. Adv. Opt. Mater. 4, 1060–1066 (2016). doi: 10.1002/adom.201600079
[57] Chu, C. H. et al. Active dielectric metasurface based on phase-change medium. Laser Photonics Rev. 10, 986–994 (2016). doi: 10.1002/lpor.201600106
[58] Li, P. N. et al. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material. Nat. Mater. 15, 870–875 (2016). doi: 10.1038/nmat4649
[59] Du, K. K. et al. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST. Light Sci. Appl. 6, e16194 (2017). doi: 10.1038/lsa.2016.194
[60] Mkhitaryan, V. K. et al. Tunable complete optical absorption in multilayer structures including Ge2Sb2Te5 without lithographic patterns. Adv. Opt. Mater. 5, 1600452 (2017). doi: 10.1002/adom.201600452
[61] Yin, X. H. et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces. Light Sci. Appl. 6, e17016 (2017). doi: 10.1038/lsa.2017.16
[62] Cao, T., Wei, C. W., Simpson, R. E., Zhang, L. & Cryan, M. J. Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies. Sci. Rep. 4, 3955 (2014). doi: 10.1038/srep03955
[63] Lee, S. H., Jung, Y. & Agarwal, R. Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. Nat. Nanotechnol. 2, 626–630 (2007). doi: 10.1038/nnano.2007.291
[64] Yu, X. et al. Improved multi-level data storage properties of germanium-antimony-tellurium films by nitrogen doping. Scr. Mater. 141, 120–124 (2017). doi: 10.1016/j.scriptamat.2017.08.003
[65] Fan, T. et al. The crystallization behavior of amorphous Ge2Sb2Te5 films induced by a multi-pulsed nanosecond laser. Semicond. Sci. Tech. 32, 095003 (2017). doi: 10.1088/1361-6641/aa7c4e
[66] Hu, Y. F. et al. Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application. Appl. Phys. Lett. 107, 263105 (2015). doi: 10.1063/1.4939149