[1] |
Wayne, R. O. Light and Video Microscopy. 3rd edn. (London: Academic Press, 2019). |
[2] |
Zuo, C. et al. Transport of intensity equation: a tutorial. Optics and Lasers in Engineering 135, 106187 (2020). doi: 10.1016/j.optlaseng.2020.106187 |
[3] |
Darafsheh, A. Microsphere-assisted microscopy. Journal of Applied Physics 131, 031102 (2022). doi: 10.1063/5.0068263 |
[4] |
Hao, X. et al. From microscopy to nanoscopy via visible light. Light:Science & Applications 2, e108 (2013). |
[5] |
Schermelleh, L. et al. Super-resolution microscopy demystified. Nature Cell Biology 21, 72-84 (2019). doi: 10.1038/s41556-018-0251-8 |
[6] |
Tang, M. W. et al. Far-field super-resolution chemical microscopy. Light:Science & Applications 12, 137 (2023). |
[7] |
Wang, Z. B. et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nature Communications 2, 218 (2011). doi: 10.1038/ncomms1211 |
[8] |
Singer, W. , Totzeck, M. & Gross, H. Handbook of Optical Systems, Volume 2: Physical Image Formation. (Weinheim: John Wiley and Sons, 2006). |
[9] |
Sheppard, C. J. R. Resolution and super-resolution. Microscopy Research and Technique 80, 590-598 (2017). doi: 10.1002/jemt.22834 |
[10] |
Pahl, T. et al. FEM-based modeling of microsphere-enhanced interferometry. Light: Advanced Manufacturing 3, 699-711 (2022). |
[11] |
Su, R. et al. Scattering and three-dimensional imaging in surface topography measuring interference microscopy. Journal of the Optical Society of America A 38, A27-A42 (2021). |
[12] |
Lehmann, P. & Pahl, T. Three-dimensional transfer function of optical microscopes in reflection mode. Journal of Microscopy 284, 45-55 (2021). doi: 10.1111/jmi.13040 |
[13] |
Lehmann, P., Hagemeier, S. & Pahl, T. Three-dimensional transfer functions of interference microscopes. Metrology 1, 122-141 (2021). doi: 10.3390/metrology1020009 |
[14] |
de Groot, P. J. The instrument transfer function for optical measurements of surface topography. Journal of Physics:Photonics 3, 024004 (2021). doi: 10.1088/2515-7647/abe3da |
[15] |
Hüser, L. et al. Microsphere assistance in interference microscopy with high numerical aperture objective lenses. Journal of Optical Microsystems 2, 044501 (2022). |
[16] |
Chen, L. W. et al. Microsphere enhanced optical imaging and patterning: from physics to applications. Applied Physics Reviews 6, 021304 (2019). doi: 10.1063/1.5082215 |
[17] |
Nguyen, T. L. et al. Quantitative phase imaging: Recent advances and expanding potential in biomedicine. ACS Nano 16, 11516-11544 (2022). doi: 10.1021/acsnano.1c11507 |
[18] |
Ferraro, P. , Wax, A. & Zalevsky, Z. Coherent Light Microscopy: Imaging and Quantitative Phase Analysis. (Berlin, Heidelberg: Springer, 2011). |
[19] |
Micó, V. et al. Resolution enhancement in quantitative phase microscopy. Advances in Optics and Photonics 11, 135-214 (2019). doi: 10.1364/AOP.11.000135 |
[20] |
Darafsheh, A. Photonic nanojets and their applications. Journal of Physics:Photonics 3, 022001 (2021). doi: 10.1088/2515-7647/abdb05 |
[21] |
Darafsheh, A. Fabrication and characterization of novel microsphere-embedded optical devices for enhancing microscopy resolution. Proceedings of SPIE 10499, 104990W (2018). |
[22] |
Darafsheh, A. & Abbasian, V. Microsphere-assisted microscopy: challenges and opportunities. Proceedings of SPIE 12618, 126180L (2023). |
[23] |
Darafsheh, A. Comment on ‘super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis’ [ann. Phys. (berlin) 527, 513 (2015)]. Annalen der Physik 528, 898-900 (2016). |
[24] |
Lecler, S. et al. Photonic jet lens. Scientific Reports 9, 4725 (2019). doi: 10.1038/s41598-019-41193-2 |
[25] |
Darafsheh, A. Optical super-resolution and periodical focusing effects by dielectric microspheres. PhD thesis, University of North Carolina at Charlotte, Charlotte, 2013. |
[26] |
Perrin, S. et al. Unconventional magnification behaviour in microsphere-assisted microscopy. Optics & Laser Technology 114, 40-43 (2019). |
[27] |
Darafsheh, A. et al. Optical super-resolution by high-index liquid-immersed microspheres. Applied Physics Letters 101, 141128 (2012). doi: 10.1063/1.4757600 |
[28] |
Darafsheh, A. & Bollinger, D. Systematic study of the characteristics of the photonic nanojets formed by dielectric microcylinders. Optics Communications 402, 270-275 (2017). doi: 10.1016/j.optcom.2017.06.004 |
[29] |
Darafsheh, A. et al. Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies. Applied Physics Letters 104, 061117 (2014). doi: 10.1063/1.4864760 |
[30] |
Darafsheh, A. et al. Optical super-resolution imaging by high-index microspheres embedded in elastomers. Optics Letters 40, 5-8 (2015). doi: 10.1364/OL.40.000005 |
[31] |
Yang, H. et al. Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope. Small 10, 1712-1718 (2014). doi: 10.1002/smll.201302942 |
[32] |
Tehrani, K. F. et al. Resolution enhancement of 2-photon microscopy using high-refractive index microspheres. Proceedings of SPIE 10498, 1049833 (2018). |
[33] |
Perrin, S. et al. Transmission microsphere-assisted dark-field microscopy. Physica Status Solidi (RRL)-Rapid Research Letters 13, 1800445 (2019). doi: 10.1002/pssr.201800445 |
[34] |
Xie, Z. Y. et al. 3D super-resolution reconstruction using microsphere-assisted structured illumination microscopy. IEEE Photonics Technology Letters 31, 1783-1786 (2019). |
[35] |
Abbasian, V. et al. Super-resolved microsphere-assisted Mirau digital holography by oblique illumination. Journal of Optics 20, 065301 (2018). doi: 10.1088/2040-8986/aac22f |
[36] |
Malacara, D. Optical Shop Testing. (Hoboken: John Wiley & Sons, 2007). |
[37] |
de Groot, P. Coherence scanning interferometry. in Optical Measurement of Surface Topography (ed Leach, R. ) (Berlin, Heidelberg: Springer, 2011), 187-208. |
[38] |
de Groot, P. Phase shifting interferometry. in Optical Measurement of Surface Topography (ed Leach, R. ) (Berlin, Heidelberg: Springer, 2011), 167-186. |
[39] |
Lehmann, P., Tereschenko, S. & Xie, W. C. Fundamental aspects of resolution and precision in vertical scanning white-light interferometry. Surface Topography:Metrology and Properties 4, 024004 (2016). doi: 10.1088/2051-672X/4/2/024004 |
[40] |
Hüser, L., Pahl, T. & Lehmann, P. Polarization dependency of the 3D transfer behavior in microsphere enhanced interferometry. EPJ Web of Conferences 266, 10006 (2022). doi: 10.1051/epjconf/202226610006 |
[41] |
Wang, F. F. et al. Three-dimensional super-resolution morphology by near-field assisted white-light interferometry. Scientific Reports 6, 24703 (2016). doi: 10.1038/srep24703 |
[42] |
Kassamakov, I. et al. 3D super-resolution optical profiling using microsphere enhanced Mirau interferometry. Scientific Reports 7, 3683 (2017). |
[43] |
Boudoukha, R. et al. Sphere choice in Mirau interferometric microsphere assisted profilometry. Proceedings of SPIE PC12152, Mesophotonics: Physics and Systems at Mesoscale. Strasbourg, France: SPIE, 2022. |
[44] |
Perrin, S. et al. Microsphere-assisted phase-shifting profilometry. Applied Optics 56, 7249-7255 (2017). doi: 10.1364/AO.56.007249 |
[45] |
Perrin, S. et al. Compensated microsphere-assisted interference microscopy. Physical Review Applied 13, 014068 (2020). doi: 10.1103/PhysRevApplied.13.014068 |
[46] |
Marbach, S. Microscopie multimodale interférométrique: spectroscopie, colorimétrie, topographie simultanées et combinaison avec des microsphères. PhD thesis, University of Strasbourg, Strasbourg, 2022. |
[47] |
Hüser, L. & Lehmann, P. Microsphere-assisted interferometry with high numerical apertures for 3D topography measurements. Applied Optics 59, 1695-1702 (2020). doi: 10.1364/AO.379222 |
[48] |
Hüser, L., Pahl, T. & Lehmann, P. Polarization dependency of the 3D transfer behavior in microsphere enhanced interferometry. EPJ Web of Conferences 266, 10006 (2022). doi: 10.1051/epjconf/202226610006 |
[49] |
Mie, G. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Annalen der Physik 330, 377-445 (1908). doi: 10.1002/andp.19083300302 |
[50] |
van de Hulst, H. C. Light Scattering by Small Particles. (New York: John Wiley and Sons, 1957). |
[51] |
Chen, Z. G., Taflove, A. & Backman, V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Optics Express 12, 1214-1220 (2004). doi: 10.1364/OPEX.12.001214 |
[52] |
Lecler, S., Takakura, Y. & Meyrueis, P. Properties of a three-dimensional photonic jet. Optics Letters 30, 2641-2643 (2005). doi: 10.1364/OL.30.002641 |
[53] |
Darafsheh, A. Influence of the background medium on imaging performance of microsphere-assisted super-resolution microscopy. Optics Letters 42, 735-738 (2017). doi: 10.1364/OL.42.000735 |
[54] |
Maslov, A. V. & Astratov, V. N. Resolution and reciprocity in microspherical nanoscopy: point-spread function versus photonic nanojets. Physical Review Applied 11, 064004 (2019). doi: 10.1103/PhysRevApplied.11.064004 |
[55] |
Ben-Aryeh, Y. Increase of resolution by use of microspheres related to complex Snell’s law. Journal of the Optical Society of America A 33, 2284-2288 (2016). doi: 10.1364/JOSAA.33.002284 |
[56] |
Yang, S. L. et al. Converting evanescent waves into propagating waves: the super-resolution mechanism in microsphere-assisted microscopy. The Journal of Physical Chemistry C 124, 25951-25956 (2020). doi: 10.1021/acs.jpcc.0c07067 |
[57] |
Boudoukha, R. et al. Near- to far-field coupling of evanescent waves by glass microspheres. Photonics 8, 73 (2021). doi: 10.3390/photonics8030073 |
[58] |
Zhou, S. et al. Effects of whispering gallery mode in microsphere super-resolution imaging. Applied Physics B 123, 236 (2017). |
[59] |
Maslov, A. V. & Astratov, V. N. Optical nanoscopy with contact Mie-particles: resolution analysis. Applied Physics Letters 110, 261107 (2017). doi: 10.1063/1.4989687 |
[60] |
Pahl, T. et al. Two-dimensional modelling of systematic surface height deviations in optical interference microscopy based on rigorous near field calculation. Journal of Modern Optics 67, 963-973 (2020). doi: 10.1080/09500340.2020.1801871 |
[61] |
Pahl, T. et al. 3D modeling of coherence scanning interferometry on 2D surfaces using FEM. Optics Express 28, 39807-39826 (2020). |
[62] |
Pahl, T. et al. Rigorous 3D modeling of confocal microscopy on 2D surface topographies. Measurement Science and Technology 32, 094010 (2021). doi: 10.1088/1361-6501/abfd69 |
[63] |
Jin, J. M. Theory and Computation of Electromagnetic Fields. 2nd edn. (New York: John Wiley & Sons, 2015). |
[64] |
Bodermann, B. & Ehret, G. Comparison of different approaches for modelling microscope images on the basis of rigorous diffraction calculation. Proceedings of SPIE 5858, 585809 (2005). doi: 10.1117/12.612632 |
[65] |
Boriskin, A. V. et al. Test of the FDTD accuracy in the analysis of the scattering resonances associated with high-Q whispering-gallery modes of a circular cylinder. Journal of the Optical Society of America A 25, 1169-1173 (2008). doi: 10.1364/JOSAA.25.001169 |
[66] |
Qiu, S. L. & Li, Y. P. Q-factor instability and its explanation in the staircased FDTD simulation of high-Q circular cavity. Journal of the Optical Society of America B 26, 1664-1674 (2009). |
[67] |
Zihan, Y. & Lecler, S. Whispering gallery mode resonance contribution in photonic nanojet simulation. Opt. Express 29, 39249-39255 (2021). doi: 10.1364/OE.443546 |
[68] |
Simetrics. (2022). athttp://www.simetrics.de/ URL. |
[69] |
Darafsheh, A. et al. Super-resolution optical microscopy by using dielectric microwires. Proceedings of SPIE 9713, 97130U (2016). |
[70] |
Duocastella, M. et al. Combination of scanning probe technology with photonic nanojets. Scientific Reports 7, 3474 (2017). doi: 10.1038/s41598-017-03726-5 |
[71] |
Pahl, T. et al. Simulative investigation of microcylinder-assisted microscopy in reflection and transmission mode. Proceedings of SPIE 12619, Modeling Aspects in Optical Metrology IX. Munich, Germany: SPIE, 2023. |
[72] |
Javidi, B. et al. Roadmap on digital holography [Invited]. Optics Express 29, 35078-35118 (2021). doi: 10.1364/OE.435915 |
[73] |
O’Connor, T. et al. Digital holographic deep learning of red blood cells for field-portable, rapid COVID-19 screening. Optics Letters 46, 2344-2347 (2021). doi: 10.1364/OL.426152 |
[74] |
O’Connor, T. et al. Deep learning-based cell identification and disease diagnosis using spatio-temporal cellular dynamics in compact digital holographic microscopy. Biomedical Optics Express 11, 4491-4508 (2020). doi: 10.1364/BOE.399020 |
[75] |
Kim, M. K. Phase microscopy and surface profilometry by digital holography. Light:Advanced Manufacturing 3, 481-492 (2022). |
[76] |
Anand, A., Moon, I. & Javidi, B. Automated disease identification with 3-D optical imaging: a medical diagnostic tool. Proceedings of the IEEE 105, 924-946 (2017). doi: 10.1109/JPROC.2016.2636238 |
[77] |
Panahi, M. A. et al. Role of pH level on the morphology and growth rate of myelin figures. Biomedical Optics Express 11, 5565-5574 (2020). doi: 10.1364/BOE.401834 |
[78] |
Abbasian, V. et al. Digital holographic microscopy for 3D surface characterization of polymeric nanocomposites. Ultramicroscopy 185, 72-80 (2018). doi: 10.1016/j.ultramic.2017.11.013 |
[79] |
O’Connor, T. et al. Overview of cell motility-based sickle cell disease diagnostic system in shearing digital holographic microscopy. Journal of Physics:Photonics 2, 031002 (2020). doi: 10.1088/2515-7647/ab8a58 |
[80] |
Zhang, J. W. et al. A review of common-path off-axis digital holography: towards high stable optical instrument manufacturing. Light:Advanced Manufacturing 2, 333-349 (2021). |
[81] |
Anand, A., Chhaniwal, V. & Javidi, B. Tutorial: common path self-referencing digital holographic microscopy. APL Photonics 3, 071101 (2018). doi: 10.1063/1.5027081 |
[82] |
Javidi, B. et al. Cell identification using single beam lensless imaging with pseudo-random phase encoding. Optics Letters 41, 3663-3666 (2016). doi: 10.1364/OL.41.003663 |
[83] |
Pedrini, G., Zhang, F. C. & Osten, W. Digital holographic microscopy in the deep (193 nm) ultraviolet. Applied Optics 46, 7829-7835 (2007). doi: 10.1364/AO.46.007829 |
[84] |
Faridian, A. et al. Nanoscale imaging using deep ultraviolet digital holographic microscopy. Optics Express 18, 14159-14164 (2010). doi: 10.1364/OE.18.014159 |
[85] |
Calabuig, A. et al. Investigating fibroblast cells under “safe” and “injurious” blue-light exposure by holographic microscopy. Journal of Biophotonics 10, 919-927 (2017). doi: 10.1002/jbio.201500340 |
[86] |
Gao, P. & Yuan, C. J. Resolution enhancement of digital holographic microscopy via synthetic aperture: a review. Light:Advanced Manufacturing 3, 105-120 (2022). doi: 10.37188/lam.2022.006 |
[87] |
Martínez-Corral, M. & Saavedra, G. The resolution challenge in 3D optical microscopy. Progress in Optics 53, 1-67 (2009). |
[88] |
Wang, Y. X. et al. Resolution enhancement phase-contrast imaging by microsphere digital holography. Optics Communications 366, 81-87 (2016). doi: 10.1016/j.optcom.2015.12.031 |
[89] |
Colomb, T. et al. Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram. Optics Express 14, 4300-4306 (2006). doi: 10.1364/OE.14.004300 |
[90] |
Ferraro, P. et al. Quantitative phase microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography. Optics Express 15, 14591-14600 (2007). doi: 10.1364/OE.15.014591 |
[91] |
Anand, A. et al. Self-referencing digital holographic microscope for dynamic imaging of living cells. Proceedings of SPIE 9117, 91170X (2014). |
[92] |
Kim, M. K. Digital Holographic Microscopy: Principles, Techniques, and Applications. (New York: Springer, 2011). |
[93] |
Aakhte, M. et al. Microsphere-assisted super-resolved Mirau digital holographic microscopy for cell identification. Applied Optics 56, D8-D13 (2017). doi: 10.1364/AO.56.0000D8 |
[94] |
O’Connor, T., Anand, A. & Javidi, B. Field-portable microsphere-assisted high resolution digital holographic microscopy in compact and 3D-printed Mach-Zehnder interferometer. OSA Continuum 3, 1013-1020 (2020). doi: 10.1364/OSAC.389832 |
[95] |
Abbasian, V., Darafsheh, A. & Moradi, A. R. Simple high-resolution 3D microscopy by a dielectric microsphere: a proof of concept. Optics Letters 48, 6216-6219 (2023). doi: 10.1364/OL.502599 |
[96] |
Kabi, S., Moradi, A. R. & Cabrera, H. Microsphere-assisted enhanced photothermal lens detection integrated with digital holographic microscopy for 3D particle sensing and thermal diffusivity measurement. Journal of Applied Physics 133, 215103 (2023). doi: 10.1063/5.0146942 |
[97] |
Abbasian, V., Rasouli, S. & Moradi, A. R. Microsphere-assisted self-referencing digital holographic microscopy in transmission mode. Journal of Optics 21, 045301 (2019). doi: 10.1088/2040-8986/ab0815 |
[98] |
O’Connor, T. and Javidi, B. COVID-19 screening with digital holographic microscopy using intra-patient probability functions of spatio-temporal bio-optical attributes. Biomedical Optics Express 13, 5377-5389 (2022). |
[99] |
Javidi, B. et al. Sickle cell disease diagnosis based on spatio-temporal cell dynamics analysis using 3D printed shearing digital holographic microscopy. Optics Express 26, 13614-13627 (2018). doi: 10.1364/OE.26.013614 |
[100] |
Abbasian, V. & Darafsheh, A. A dataset of digital holograms of normal and thalassemic cells. Scientific Data 11, 3 (2024). doi: 10.1038/s41597-023-02818-4 |
[101] |
Douglass, P. M., O’Connor, T. & Javidi, B. Automated sickle cell disease identification in human red blood cells using a lensless single random phase encoding biosensor and convolutional neural networks. Optics Express 30, 35965-35977 (2022). doi: 10.1364/OE.469199 |
[102] |
Kaupp, G. Atomic Force Microscopy, Scanning Nearfield Optical Microscopy and Nanoscratching: Application to Rough and Natural Surfaces. (Berlin Heidelberg: Springer, 2006). |
[103] |
Darafsheh, A. & Abbasian, V. Dielectric microspheres enhance microscopy resolution mainly due to increasing the effective numerical aperture. Light:Science & Applications 12, 22 (2023). |
[104] |
Krivitsky, L. A. et al. Locomotion of microspheres for super-resolution imaging. Scientific reports 3, 3501 (2013). doi: 10.1038/srep03501 |
[105] |
Wang, S. Y. et al. Super-resolution optical microscopy based on scannable cantilever-combined microsphere. Microscopy Research and Technique 78, 1128-1132 (2015). doi: 10.1002/jemt.22595 |
[106] |
Kwon, S. et al. Microsphere-assisted, nanospot, non-destructive metrology for semiconductor devices. Light:Science & Applications 11, 32 (2022). |
[107] |
Hajj, T. et al. High-quality manipulable fiber-microsphere for super-resolution microscopy. Optics Letters 48, 2222-2225 (2023). doi: 10.1364/OL.484399 |
[108] |
Guo, H. M. et al. Near-field focusing of the dielectric microsphere with wavelength scale radius. Optics Express 21, 2434-2443 (2013). doi: 10.1364/OE.21.002434 |