[1] Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7, 603–614 (2010). doi: 10.1038/nmeth.1483
[2] Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990). doi: 10.1126/science.2321027
[3] Horton, N. G. et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics 7, 205–209 (2013). doi: 10.1038/nphoton.2012.336
[4] Ouzounov, D. G. et al. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain. Nat. Methods 14, 388–390 (2017). doi: 10.1038/nmeth.4183
[5] Mahajan, V. N. Optical Imaging and Aberrations: Part I. Ray Geometrical Optics (SPIE Press, Bellingham, WA, 1998).
[6] Goodman, J. W. Statistical Optics (Wiley, New York, 2000).
[7] Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007). doi: 10.1364/OL.32.002309
[8] Yaqoob, Z. et al. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics 2, 110–115 (2008). doi: 10.1038/nphoton.2007.297
[9] Hsieh, C. L. et al. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media. Opt. Express 18, 12283–12290 (2010). doi: 10.1364/OE.18.012283
[10] Cui, M. & Yang, C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Opt. Express 18, 3444–3455 (2010). doi: 10.1364/OE.18.003444
[11] Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010). doi: 10.1103/PhysRevLett.104.100601
[12] Booth, M. J. et al. Adaptive aberration correction in a confocal microscope. Proc. Natl. Acad. Sci. USA 99, 5788–5792 (2002). doi: 10.1073/pnas.082544799
[13] Neil, M. A. A. et al. Adaptive aberration correction in a two-photon microscope. J. Microsc. 200, 105–108 (2000). doi: 10.1046/j.1365-2818.2000.00770.x
[14] Olivier, N., Débarre, D. & Beaurepaire, E. Dynamic aberration correction for multiharmonic microscopy. Opt. Lett. 34, 3145–3147 (2009). doi: 10.1364/OL.34.003145
[15] Tao, X. D. et al. Adaptive optics confocal microscopy using direct wavefront sensing. Opt. Lett. 36, 1062–1064 (2011). doi: 10.1364/OL.36.001062
[16] Wang, K. et al. Rapid adaptive optical recovery of optimal resolution over large volumes. Nat. Methods 11, 625–628 (2014). doi: 10.1038/nmeth.2925
[17] Wang, K. et al. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue. Nat. Commun. 6, 7276 (2015). doi: 10.1038/ncomms8276
[18] Ji, N., Milkie, D. E. & Betzig, E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat. Methods 7, 141–147 (2010). doi: 10.1038/nmeth.1411
[19] Wang, C. et al. Multiplexed aberration measurement for deep tissue imaging in vivo. Nat. Methods 11, 1037–1040 (2014). doi: 10.1038/nmeth.3068
[20] Tang, J. Y., Germain, R. N. & Cui, M. Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique. Proc. Natl. Acad. Sci. USA 109, 8434–8439 (2012). doi: 10.1073/pnas.1119590109
[21] Katz, O. et al. Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers. Optica 1, 170–174 (2014). doi: 10.1364/OPTICA.1.000170
[22] Papadopoulos, I. N. et al. Scattering compensation by focus scanning holographic aberration probing (F-SHARP). Nat. Photonics 11, 116–123 (2017). doi: 10.1038/nphoton.2016.252
[23] Freund, I., Rosenbluh, M. & Feng, S. C. Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett. 61, 2328–2331 (1988). doi: 10.1103/PhysRevLett.61.2328
[24] Feng, S. C. et al. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett. 61, 834–837 (1988). doi: 10.1103/PhysRevLett.61.834
[25] Schott, S. et al. Characterization of the angular memory effect of scattered light in biological tissues. Opt. Express 23, 13505–13516 (2015). doi: 10.1364/OE.23.013505
[26] Judkewitz, B. et al. Translation correlations in anisotropically scattering media. Nat. Phys. 11, 684–689 (2015). doi: 10.1038/nphys3373
[27] Osnabrugge, G. et al. Generalized optical memory effect. Optica 4, 886–892 (2017). doi: 10.1364/OPTICA.4.000886
[28] Hsieh, C. L. et al. Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle. Opt. Express 18, 20723–20731 (2010). doi: 10.1364/OE.18.020723
[29] Vellekoop, I. M. & Aegerter, C. M. Scattered light fluorescence microscopy: imaging through turbid layers. Opt. Lett. 35, 1245–1247 (2010). doi: 10.1364/OL.35.001245
[30] Bertolotti, J. et al. Non-invasive imaging through opaque scattering layers. Nature 491, 232–234 (2012). doi: 10.1038/nature11578
[31] Katz, O., Small, E. & Silberberg, Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light. Nat. Photonics 6, 549–553 (2012). doi: 10.1038/nphoton.2012.150
[32] Beckers, J. M. Increasing the size of the isoplanatic patch with multiconjugate adaptive optics. Proceedings of European Southern Observatory Conference and Workshop (European Southern Observatory, Garching, 1988).
[33] Johnston, D. C. & Welsh, B. M. Analysis of multiconjugate adaptive optics. J. Optical Soc. Am. A 11, 394–408 (1994). doi: 10.1364/JOSAA.11.000394
[34] Ragazzoni, R., Marchetti, E. & Valente, G. Adaptive-optics corrections available for the whole sky. Nature 403, 54–56 (2000). doi: 10.1038/47425
[35] Tokovinin, A., Le Louarn, M. & Sarazin, M. Isoplanatism in a multiconjugate adaptive optics system. J. Optical Soc. Am. A 17, 1819–1827 (2000). doi: 10.1364/JOSAA.17.001819
[36] Mertz, J., Paudel, H. & Bifano, T. G. Field of view advantage of conjugate adaptive optics in microscopy applications. Appl. Opt. 54, 3498–3506 (2015). doi: 10.1364/AO.54.003498
[37] Park, J. H., Sun, W. & Cui, M. High-resolution in vivo imaging of mouse brain through the intact skull. Proc. Natl Acad. Sci. USA 112, 9236–9241 (2015). doi: 10.1073/pnas.1505939112
[38] Tao, X. D. et al. Three-dimensional focusing through scattering media using conjugate adaptive optics with remote focusing (CAORF). Opt. Express 25, 10368–10383 (2017). doi: 10.1364/OE.25.010368
[39] Goodman, J. W. Introduction to Fourier Optics 3rd edn (Roberts and Company Publishers, Greenwoood Village, 2005).
[40] Feng, G. P. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000). doi: 10.1016/S0896-6273(00)00084-2
[41] Paudel, H. P. et al. Axial range of conjugate adaptive optics in two-photon microscopy. Opt. Express 23, 20849–20857 (2015). doi: 10.1364/OE.23.020849
[42] Drew, P. J. et al. Chronic optical access through a polished and reinforced thinned skull. Nat. Methods 7, 981–984 (2010). doi: 10.1038/nmeth.1530