[1] El Hassan, A. et al. Corner states of light in photonic waveguides. Nat. Photonics 13, 697-700 (2019). doi: 10.1038/s41566-019-0519-y
[2] Florentin, R. et al. Shaping the light amplified in a multimode fiber. Light Sci. Appl. 6, e16208 (2017). doi: 10.1038/lsa.2016.208
[3] Whitesides, G. M., Mathias, J. P. & Seto, C. T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254, 1312-1319 (1991). doi: 10.1126/science.1962191
[4] Ungar, G. et al. Giant supramolecular liquid crystal lattice. Science 299, 1208-1211 (2003). doi: 10.1126/science.1078849
[5] Manni, F. et al. Spontaneous pattern formation in a polariton condensate. Phys. Rev. Lett. 107, 106401 (2011). doi: 10.1103/PhysRevLett.107.106401
[6] Naidoo, D. et al. Intra-cavity generation of superpositions of Laguerre-Gaussian beams. Appl. Phys. B 106, 683-690 (2012). doi: 10.1007/s00340-011-4775-x
[7] Dreismann, A. et al. Coupled counterrotating polariton condensates in optically defined annular potentials. Proc. Natl Acad. Sci. USA 111, 8770-8775 (2014). doi: 10.1073/pnas.1401988111
[8] Molina-Terriza, G., Torres, J. P. & Torner, L. Twisted photons. Nat. Phys. 3, 305-310 (2007).
[9] Naidoo, D. et al. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photonics 10, 327-332 (2016). doi: 10.1038/nphoton.2016.37
[10] Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464-467 (2016). doi: 10.1126/science.aaf8533
[11] Devlin, R. C. et al. Arbitrary spin-to-orbital angular momentum conversion of light. Science 358, 896-901 (2017). doi: 10.1126/science.aao5392
[12] Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995-1001 (2017). doi: 10.1126/science.aal3837
[13] Kasprzak, J. et al. Second-order time correlations within a polariton Bose-Einstein condensate in a CdTe microcavity. Phys. Rev. Lett. 100, 067402 (2008). doi: 10.1103/PhysRevLett.100.067402
[14] Krizhanovskii, D. N. et al. Coexisting nonequilibrium condensates with long-range spatial coherence in semiconductor microcavities. Phys. Rev. B 80, 045317 (2009). doi: 10.1103/PhysRevB.80.045317
[15] Deng, H., Haug, H. & Yamamoto, Y. Exciton-polariton bose-einstein condensation. Rev. Mod. Phys. 82, 1489-1537 (2010). doi: 10.1103/RevModPhys.82.1489
[16] Kasprzak, J. et al. Bose-Einstein condensation of exciton polaritons. Nature 443, 409-414 (2006). doi: 10.1038/nature05131
[17] Balili, R. et al. Bose-Einstein condensation of microcavity polaritons in a trap. Science 316, 1007-1010 (2007). doi: 10.1126/science.1140990
[18] Baumberg, J. J. et al. Spontaneous polarization buildup in a room-temperature polariton laser. Phys. Rev. Lett. 101, 136409 (2008). doi: 10.1103/PhysRevLett.101.136409
[19] Ohadi, H. et al. Spontaneous spin bifurcations and ferromagnetic phase transitions in a spinor exciton-polariton condensate. Phys. Rev. X 5, 031002 (2015).
[20] Ohadi, H. et al. Tunable magnetic alignment between trapped exciton-polariton condensates. Phys. Rev. Lett. 116, 106403 (2016). doi: 10.1103/PhysRevLett.116.106403
[21] Ohadi, H. et al. Spin order and phase transitions in chains of polariton condensates. Phys. Rev. Lett. 119, 067401 (2017). doi: 10.1103/PhysRevLett.119.067401
[22] Su, R. et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat. Phys. 16, 301--3306 (2020). doi: 10.1038/s41567-019-0764-5
[23] Dusel, M. et al. Room temperature organic exciton-polariton condensate in a lattice. Nat. Commun. 11, 2863 (2020). doi: 10.1038/s41467-020-16656-0
[24] Nardin, G. et al. Probability density optical tomography of confined quasiparticles in a semiconductor microcavity. Appl. Phys. Lett. 94, 181103 (2009). doi: 10.1063/1.3126022
[25] Zambon, N. C. et al. Optically controlling the emission chirality of microlasers. Nat. Photonics 13, 283-288 (2019). doi: 10.1038/s41566-019-0380-z
[26] Klembt, S. et al. Exciton-polariton topological insulator. Nature 562, 552-556 (2018). doi: 10.1038/s41586-018-0601-5
[27] St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photonics 11, 651-656 (2017). doi: 10.1038/s41566-017-0006-2
[28] Jacqmin, T. et al. Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett. 112, 116402 (2014). doi: 10.1103/PhysRevLett.112.116402
[29] Whittaker, C. E. et al. Exciton polaritons in a two-dimensional lieb lattice with spin-orbit coupling. Phys. Rev. Lett. 120, 097401 (2018). doi: 10.1103/PhysRevLett.120.097401
[30] Wang, J. et al. Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite. ACS Nano 12, 8382-8389 (2018). doi: 10.1021/acsnano.8b03737
[31] Fieramosca, A. et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci. Adv. 5, eaav9967 (2019). doi: 10.1126/sciadv.aav9967
[32] Brehier, A. et al. Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors. Appl. Phys. Lett. 89, 171110 (2006). doi: 10.1063/1.2369533
[33] Su, R. et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett. 17, 3982-3988 (2017). doi: 10.1021/acs.nanolett.7b01956
[34] Su, R. et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Sci. Adv. 4, eaau0244 (2018). doi: 10.1126/sciadv.aau0244
[35] Kozin, V. K. et al. Topological metamaterials based on polariton rings. Phys. Rev. B 98, 125115 (2018). doi: 10.1103/PhysRevB.98.125115
[36] Shelykh, I. et al. Proposal for a mesoscopic optical Berry-phase interferometer. Phys. Rev. Lett. 102, 046407 (2009). doi: 10.1103/PhysRevLett.102.046407
[37] Dall, R. et al. Creation of orbital angular momentum states with chiral polaritonic lenses. Phys. Rev. Lett. 113, 200404 (2014). doi: 10.1103/PhysRevLett.113.200404
[38] Mukherjee, S. et al. Observation of nonequilibrium motion and equilibration in polariton rings. Phys. Rev. B 100, 245304 (2019). doi: 10.1103/PhysRevB.100.245304
[39] Ma, X. K. et al. Realization of all-optical vortex switching in exciton-polariton condensates. Nat. Commun. 11, 897 (2020). doi: 10.1038/s41467-020-14702-5
[40] Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061-1073 (2016). doi: 10.1038/nmat4668