[1] |
Vahala, K. J. Optical microcavities. Nature 424, 839-846 (2003). doi: 10.1038/nature01939 |
[2] |
Agio, M. & Alù, A. Optical Antennas. (Cambridge University Press, Cambridge, 2013). |
[3] |
Santori, C., Fattal, D. & Yamamoto, Y. Single-Photon Devices and Applications. (Wiley-VCH, Leipzig, 2010). |
[4] |
Doeleman, H. M., Verhagen, E. & Koenderink, A. F. Antenna-cavity hybrids: matching polar opposites for Purcell enhancements at any linewidth. ACS Photonics 3, 1943-1951 (2016). doi: 10.1021/acsphotonics.6b00453 |
[5] |
Koenderink, A. F. Single-photon nanoantennas. ACS Photonics 4, 710-722 (2017). doi: 10.1021/acsphotonics.7b00061 |
[6] |
Törmä, P. & Barnes, W. L. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys. 78, 013901 (2015). doi: 10.1088/0034-4885/78/1/013901 |
[7] |
Baranov, D. G. et al. Novel nanostructures and materials for strong light-matter interactions. ACS Photonics 5, 24-42 (2018). |
[8] |
Roelli, P. et al. Molecular cavity optomechanics as a theory of plasmon-enhanced raman scattering. Nat. Nanotechnol. 11, 164-169 (2016). doi: 10.1038/nnano.2015.264 |
[9] |
Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127-130 (2016). doi: 10.1038/nature17974 |
[10] |
Hoang, T. B., Akselrod, G. M. & Mikkelsen, M. H. Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities. Nano Lett. 16, 270-275 (2016). doi: 10.1021/acs.nanolett.5b03724 |
[11] |
Fernández-Domínguez, A. I., Bozhevolnyi, S. I. & Mortensen, N. A. Plasmon-enhanced generation of nonclassical light. ACS Photonics 5, 3447-3451 (2018). doi: 10.1021/acsphotonics.8b00852 |
[12] |
Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347-400 (2015). doi: 10.1103/RevModPhys.87.347 |
[13] |
Barth, M. et al. Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling. Nano Lett. 10, 891-895 (2010). doi: 10.1021/nl903555u |
[14] |
Xiao, Y. F. et al. Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator. Phys. Rev. A 85, 031805 (2012). doi: 10.1103/PhysRevA.85.031805 |
[15] |
Ameling, R. & Giessen, H. Microcavity plasmonics: strong coupling of photonic cavities and plasmons. Laser Photonics Rev. 7, 141-169 (2013). doi: 10.1002/lpor.201100041 |
[16] |
Gurlek, B., Sandoghdar, V. & Martín-Cano, D. Manipulation of quenching in nanoantenna-emitter systems enabled by external detuned cavities: a path to enhance strong-coupling. ACS Photonics 5, 456-461 (2018). doi: 10.1021/acsphotonics.7b00953 |
[17] |
Ahn, W. et al. Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules. ACS Nano 6, 951-960 (2012). doi: 10.1021/nn204577v |
[18] |
Ruesink, F. et al. Controlling nanoantenna polarizability through backaction via a single cavity mode. Phys. Rev. Lett. 120, 206101 (2018). doi: 10.1103/PhysRevLett.120.206101 |
[19] |
Bozzola, A., Perotto, S. & De Angelis, F. Hybrid plasmonic -photonic whispering gallery mode resonators for sensing: a critical review. Analyst 142, 883-898 (2017). doi: 10.1039/C6AN02693A |
[20] |
Ruesink, F. et al. Perturbing open cavities: anomalous resonance frequency shifts in a hybrid cavity-nanoantenna system. Phys. Rev. Lett. 115, 203904 (2015). doi: 10.1103/PhysRevLett.115.203904 |
[21] |
Dezfouli, M. K., Gordon, R. & Hughes, S. Molecular optomechanics in the anharmonic cavity-QED regime using hybrid metal-dielectric cavity modes. ACS Photonics 6, 1400-1408 (2019). doi: 10.1021/acsphotonics.8b01091 |
[22] |
Gross, M. & Haroche, S. Superradiance: an essay on the theory of collective spontaneous emission. Phys. Rep. 93, 301-396 (1982). doi: 10.1016/0370-1573(82)90102-8 |
[23] |
Fauché, P., Kosionis, S. G. & Lalanne, P. Collective scattering in hybrid nanostructures with many atomic oscillators coupled to an electromagnetic resonance. Phys. Rev. B 95, 195418 (2017). doi: 10.1103/PhysRevB.95.195418 |
[24] |
Novotny, L. & van Hulst, N. Antennas for light. Nat. Photonics 5, 83-90 (2011). doi: 10.1038/nphoton.2010.237 |
[25] |
Engheta, N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317, 1698-1702 (2007). doi: 10.1126/science.1133268 |
[26] |
Koenderink, A. F. Plasmon nanoparticle array waveguides for single photon and single plasmon sources. Nano Lett. 9, 4228-4233 (2009). doi: 10.1021/nl902439n |
[27] |
Curto, A. G. et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930-933 (2010). doi: 10.1126/science.1191922 |
[28] |
Wiersig, J. Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles. Phys. Rev. A 84, 063828 (2011). doi: 10.1103/PhysRevA.84.063828 |
[29] |
Peng, B. et al. Chiral modes and directional lasing at exceptional points. Proc. Natl. Acad. Sci. USA 113, 6845-6850 (2016). doi: 10.1073/pnas.1603318113 |
[30] |
Frimmer, M. & Koenderink, A. F. Superemitters in hybrid photonic systems: a simple lumping rule for the local density of optical states and its breakdown at the unitary limit. Phys. Rev. B 86, 235428 (2012). doi: 10.1103/PhysRevB.86.235428 |
[31] |
Yang, J., Perrin, M. & Lalanne, P. Analytical formalism for the interaction of two-level quantum systems with metal nanoresonators. Phys. Rev. X 5, 021008 (2015). |
[32] |
Lassalle, E. et al. Interplay between spontaneous decay rates and lamb shifts in open photonic systems. Opt. Lett. 43, 1950-1953 (2018). doi: 10.1364/OL.43.001950 |
[33] |
Cognée, K. G. et al. Mapping complex mode volumes with cavity perturbation theory. Optica 6, 269-273 (2019). doi: 10.1364/OPTICA.6.000269 |
[34] |
Yang, J., Giessen, H. & Lalanne, P. Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing. Nano Lett. 15, 3439-3444 (2015). doi: 10.1021/acs.nanolett.5b00771 |
[35] |
García de Abajo, F. J. Colloquium: light scattering by particle and hole arrays. Rev. Mod. Phys. 79, 1267-1290 (2007). doi: 10.1103/RevModPhys.79.1267 |
[36] |
Lalanne, P. et al. Light interaction with photonic and plasmonic resonances. Laser Photonics Rev. 12, 1700113 (2018). doi: 10.1002/lpor.201700113 |
[37] |
Yan, W., Faggiani, R. & Lalanne, P. Rigorous modal analysis of plasmonic nanoresonators. Phys. Rev. B 97, 205422 (2018). doi: 10.1103/PhysRevB.97.205422 |
[38] |
Sauvan, C. et al. Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. Phys. Rev. Lett. 110, 237401 (2013). doi: 10.1103/PhysRevLett.110.237401 |
[39] |
Palstra, I. M., Doeleman, H. M. & Koenderink, A. F. Hybrid cavity-antenna systems for quantum optics outside the cryostat? Nanophotonics 8, 1513-1531 (2019). doi: 10.1515/nanoph-2019-0062 |
[40] |
Miri, M. A. & Alù, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019). doi: 10.1126/science.aar7709 |
[41] |
Hodaei, H. et al. Parity-time-symmetric microring lasers. Science 346, 975-978 (2014). doi: 10.1126/science.1258480 |
[42] |
Liu, W. & Kivshar, Y. S. Generalized Kerker effects in nanophotonics and meta-optics [Invited]. Opt. Express 26, 13085-13105 (2018). doi: 10.1364/OE.26.013085 |
[43] |
Picardi, M. F. et al. Experimental demonstration of linear and spinning Janus dipoles for polarisation- and wavelength-selective near-field coupling. Light. Sci. Appl. 8, 52 (2019). doi: 10.1038/s41377-019-0162-x |
[44] |
Petersen, J., Volz, J. & Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science 346, 67-71 (2014). doi: 10.1126/science.1257671 |
[45] |
Le Feber, B., Rotenberg, N. & Kuipers, L. Nanophotonic control of circular dipole emission. Nat. Commun. 6, 6695 (2015). doi: 10.1038/ncomms7695 |
[46] |
Lodahl, P. et al. Chiral quantum optics. Nature 541, 473-480 (2017). doi: 10.1038/nature21037 |