[1] Taylor-Williams, M. et al. Spectrally tailored hyperpixel filter arrays for efficient imaging of chemical compositions. Proceedings of Optical Biopsy XX: Toward Real-Time Spectroscopic Imaging and Diagnosis. San Francisco, California, United States: SPIE, 2022, 1195406, doi: 10.1117/12.2606917.
[2] Li, Q. L. et al. Review of spectral imaging technology in biomedical engineering: achievements and challenges. Journal of Biomedical Optics 18, 100901 (2013). doi: 10.1117/1.JBO.18.10.100901
[3] Lu, G. L. & Fei, B. W. Medical hyperspectral imaging: a review. Journal of Biomedical Optics 19, 010901 (2014). doi: 10.1117/1.JBO.19.1.010901
[4] Spigulis, J. , Jakovels, D. & Elste, L. Towards single snapshot multispectral skin assessment. Proceedings of Multimodal Biomedical Imaging VII. San Francisco, California, United States: SPIE, 2012, 82160L, doi: 10.1117/12.908967.
[5] Bauer, J. R. et al. A spectral filter array camera for clinical monitoring and diagnosis: proof of concept for skin oxygenation imaging. Journal of Imaging 5, 66 (2019). doi: 10.3390/jimaging5080066
[6] Waterhouse, D. J. et al. A roadmap for the clinical implementation of optical-imaging biomarkers. Nature Biomedical Engineering 3, 339-353 (2019). doi: 10.1038/s41551-019-0392-5
[7] Clancy, N. T. et al. Surgical spectral imaging. Medical Image Analysis 63, 101699 (2020). doi: 10.1016/j.media.2020.101699
[8] Luthman, A. S. et al. Bimodal reflectance and fluorescence multispectral endoscopy based on spectrally resolving detector arrays. Journal of Biomedical Optics 24, 1-14 (2018).
[9] Liu, Y. W., Pu, H. B. & Sun, D. W. Hyperspectral imaging technique for evaluating food quality and safety during various processes: a review of recent applications. Trends in Food Science & Technology 69, 25-35 (2017).
[10] Clarke, K. et al. Using hyperspectral imagery to investigate large-scale seagrass cover and genus distribution in a temperate coast. Scientific Reports 11, 4182 (2021). doi: 10.1038/s41598-021-83728-6
[11] Adão, T. et al. Hyperspectral imaging: a review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sensing 9, 1110 (2017). doi: 10.3390/rs9111110
[12] Sawyer, T. W. et al. Opti-MSFA: a toolbox for generalized design and optimization of multispectral filter arrays. Optics Express 30, 7591 (2022). doi: 10.1364/OE.446767
[13] Wu, R. J. et al. Optimized multi-spectral filter arrays for spectral reconstruction. Sensors 19, 2905 (2019). doi: 10.3390/s19132905
[14] Williams, C. et al. Grayscale-to-color: single-step fabrication of bespoke multispectral filter arrays. Print at https://arxiv.org/abs/1901.10949 (2019).
[15] Thorlabs. Kurios® liquid crystal tunable bandpass filters. at https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3488 URL.
[16] SPECIM IQ data sheet. at https://www.specim.com/wp-content/uploads/2024/11/Specim-IQ-Datasheet-Long-08.pdf URL.
[17] Headwall. Nano HPTM VNIR and LiDAR on DJI matrice 350: hyperspectral imaging + LiDAR on DJI’s flagship drone. at https://fsf.nerc.ac.uk/assets/documents/Nano/NanoHP%20Datasheet.pdf URL.
[18] IMEC. Hyperspectral imaging. at https://www.imec-int.com/en/hyperspectral-imaging URL.
[19] Hyper spectral imaging. at https://www.ximea.com/support/attachments/4675/XIMEA_imec_HSI_technology-Part-V1.1.pdf URL.
[20] TOUCAN camera. at https://www.axiomoptics.com/wp-content/uploads/2022/07/TOUCAN-Camera.pdf URL.
[21] Turin, G. An introduction to matched filters. IEEE Transactions on Information Theory 6, 311-329 (1960). doi: 10.1109/TIT.1960.1057571
[22] Cianci, S. , Bland-Hawthorn, J. & O’Byrne, J. W. Multiband interference filters for differential imaging. Proceedings of the Optical and IR Telescope Instrumentation and Detectors. Munich, Germany: SPIE, 2000.
[23] Nelson, M. P. et al. Multivariate optical computation for predictive spectroscopy. Analytical Chemistry 70, 73-82 (1998). doi: 10.1021/ac970791w
[24] Kozhukh, S. et al. Design of high-transmission multiband multilayer filters for Raman spectroscopy. Journal of Nanophotonics 6, 061704 (2012). doi: 10.1117/1.JNP.6.061704
[25] Imai, F. H. et al. Comparison of spectrally narrow-band capture versus wide-band with a priori sample analysis for spectral reflectance estimation. Color and Imaging Conference 8, 234-241 (2000). doi: 10.2352/CIC.2000.8.1.art00043
[26] Xiong, J. et al. Dynamic brain spectrum acquired by a real-time ultraspectral imaging chip with reconfigurable metasurfaces. Optica 9, 461 (2022). doi: 10.1364/OPTICA.440013
[27] Ahamed, A. et al. Reconstruction-based spectroscopy using CMOS image sensors with random photon-trapping nanostructure per sensor. Proceedings of the High-Speed Biomedical Imaging and Spectroscopy VII. San Francisco, California, United States: SPIE, 2022, 1197106, doi: 10.1117/12.2610527.
[28] Mirotznik, M. S. Photonic crystal filters for multi-band optical filtering on a monolithic substrate. Journal of Nanophotonics 3, 031506 (2009). doi: 10.1117/1.3110223
[29] Zou, X. J. et al. Pixel-level Bayer-type colour router based on metasurfaces. Nature Communications 13, 3288 (2022). doi: 10.1038/s41467-022-31019-7
[30] Monakhova, K. et al. Spectral DiffuserCam: lensless snapshot hyperspectral imaging with a spectral filter array. Print at https://arxiv.org/abs/2006.08565 (2020).
[31] Wagadarikar, A. et al. Single disperser design for coded aperture snapshot spectral imaging. Applied Optics 47, B44 (2008). doi: 10.1364/AO.47.000B44
[32] Klotz, J. & Nayar, S. K. Minimalist vision with freeform pixels. Proceedings of the 18th European Conference on Computer Vision. Milan, Italy: Springer, 2024, 329-346, doi: 10.1007/978-3-031-73039-9_19.
[33] Sommerhoff, H. et al. Task driven sensor layouts-joint optimization of pixel layout and network parameters. Proceedings of 2024 IEEE International Conference on Computational Photography. Lausanne, Switzerland: IEEE, 2024, 1-10, doi: 10.1109/ICCP61108.2024.10644474.
[34] Baek, S. H. et al. Single-shot hyperspectral-depth imaging with learned diffractive optics. Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada: IEEE, 2631-2640, doi: 10.1109/ICCV48922.2021.00265.
[35] Yako, M. et al. Video-rate hyperspectral camera based on a CMOS-compatible random array of Fabry–Pérot filters. Nature Photonics 17, 218-223 (2023). doi: 10.1038/s41566-022-01141-5
[36] Rahman, M. A. et al. Scaling up multispectral color filters with binary lithography and reflow (BLR). Nanophotonics 13, 3671-3677 (2024). doi: 10.1515/nanoph-2024-0090
[37] Spectral Devices. RGB-NIR camera. at https://spectraldevices.com/products/rgb-nir-camera URL.
[38] Xiang, J. W. et al. Ultrabroadband, high color purity multispectral color filter arrays. ACS Photonics 11, 1163-1172 (2024).
[39] Beć, K. B., Grabska, J. & Huck, C. W. Near-infrared spectroscopy in bio-applications. Molecules 25, 2948 (2020). doi: 10.3390/molecules25122948
[40] Goldsmith, A. J. & Varaiya, P. P. Capacity of fading channels with channel side information. IEEE Transactions on Information Theory 43, 1986-1992 (1997). doi: 10.1109/18.641562
[41] Yi, D. R. et al. Fabrication of multispectral imaging technology driven MEMS-based micro arrayed multichannel optical filter mosaic. Proceedings of Advanced Fabrication Technologies for Micro/Nano Optics and Photonics IV. San Francisco, California, United States: SPIE, 2011, 792711, doi: 10.1117/12.875833.
[42] Hooper, C. M. , Bohndiek, S. E. & Williams, C. Optimizing achromaticity in metalenses, and development of a layered thin-film metalens. Proceedings of High Contrast Metastructures XI. San Francisco, California, United States: SPIE, 2022, 120110A, doi: 10.1117/12.2609397.
[43] Wang, S. W. et al. Integrated optical filter arrays fabricated by using the combinatorial etching technique. Optics Letters 31, 332 (2006). doi: 10.1364/OL.31.000332
[44] Soyemi, O. et al. Design and testing of a multivariate optical element: the first demonstration of multivariate optical computing for predictive spectroscopy. Analytical Chemistry 73, 1069-1079 (2001). doi: 10.1021/ac0012896
[45] Williams, C. et al. A biomedical multispectral image sensor. Proceedings of Molecular-Guided Surgery: Molecules, Devices, and Applications VIII. San Francisco, California, United States: SPIE, 2022, PC1194303, doi: 10.1117/12.2609373.
[46] Canyon Materials. High energy beam sensitive (HEBS) glass. at http://www.canyonmaterials.com/hebsglass.html URL.
[47] Sreenivasan, S. V. Nanoimprint lithography steppers for volume fabrication of leading-edge semiconductor integrated circuits. Microsystems & Nanoengineering 3, 17075 (2017).
[48] Goossens, T. Pixel-integrated thin-film filter simulation and scaling trade-offs. Print at https://arxiv.org/abs/2106.01147 (2021).
[49] Goossens, T. Crosstalk elimination by rearranging thin-film filters. Optics Letters 47, 3920 (2022). doi: 10.1364/OL.462725
[50] Lequime, M. et al. 2×2-array pixelated optical interference filters. Proceedings of the Optical Systems Design 2015: Advances in Optical Thin Films V. Jena, Germany: SPIE, 2015, 96270V, doi: 10.1117/12.2191210.
[51] Yu, Y. et al. Spatial optical crosstalk in CMOS image sensors integrated with plasmonic color filters. Optics Express 23, 21994 (2015). doi: 10.1364/OE.23.021994
[52] Goossens, T. Filter width affects the transmittance of patterned all-dielectric Fabry–Perot filters. Optics Letters 46, 5926 (2021). doi: 10.1364/OL.442737
[53] Study data. at https://doi.org/10.17639/nott.7397.
[54] Gao, L. & Smith, R. T. Optical hyperspectral imaging in microscopy and spectroscopy-a review of data acquisition. Journal of Biophotonics 8, 441-456 (2015). doi: 10.1002/jbio.201400051
[55] AR-N 7720 e-beam resists with flat gradation. at https://www.allresist.com/wp-content/uploads/sites/2/2021/02/Allresist_Product-information-E-Beamresist-AR-N-7720-English-web.pdf URL.