[1] Michler, P. Quantum Dots for Quantum Information Technologies. (Cham: Springer, 2017). doi: 10.1007/978-3-319-56378-7
[2] Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nature Photonics 10, 631-641 (2016). doi: 10.1038/nphoton.2016.186
[3] Ates, S. et al. Non-resonant dot–cavity coupling and its potential for resonant single-quantum-dot spectroscopy. Nature Photonics 3, 724-728 (2009). doi: 10.1038/nphoton.2009.215
[4] He, Y. M. et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nature Nanotechnology 8, 213-217 (2013). doi: 10.1038/nnano.2012.262
[5] Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nature Photonics 10, 340-345 (2016). doi: 10.1038/nphoton.2016.23
[6] Unsleber, S. et al. Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency. Optics Express 24, 8539-8546 (2016). doi: 10.1364/OE.24.008539
[7] Gschrey, M. et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nature Communications 6, 7662 (2015). doi: 10.1038/ncomms8662
[8] Hanschke, L. et al. Quantum dot single-photon sources with ultra-low multi-photon probability. npj Quantum Information 4, 43 (2018). doi: 10.1038/s41534-018-0092-0
[9] Liu, J. et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nature Nanotechnology 14, 586-593 (2019). doi: 10.1038/s41565-019-0435-9
[10] Duan, L. M. et al. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413-418 (2001). doi: 10.1038/35106500
[11] Gisin, N. et al. Quantum cryptography. Reviews of Modern Physics 74, 145-195 (2002). doi: 10.1103/RevModPhys.74.145
[12] Gisin, N. & Thew, R. Quantum communication. Nature Photonics 1, 165-171 (2007). doi: 10.1038/nphoton.2007.22
[13] Benisty, H., De Neve, H. & Weisbuch, C. Impact of planar microcavity effects on light extraction-Part I: basic concepts and analytical trends. IEEE Journal of Quantum Electronics 34, 1612-1631 (1998). doi: 10.1109/3.709578
[14] Gérard, J. M. et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Physical Review Letters 81, 1110-1113 (1998). doi: 10.1103/PhysRevLett.81.1110
[15] Pelton, M. et al. Efficient source of single photons: a single quantum dot in a micropost microcavity. Physical Review Letters 89, 233602 (2002). doi: 10.1103/PhysRevLett.89.233602
[16] Ates, S. et al. Bright single-photon emission from a quantum dot in a circular bragg grating microcavity. IEEE Journal of Selected Topics in Quantum Electronics 18, 1711-1721 (2012). doi: 10.1109/JSTQE.2012.2193877
[17] Biteen, J. S. et al. Spectral tuning of plasmon-enhanced silicon quantum dot luminescence. Applied Physics Letters 88, 131109 (2006). doi: 10.1063/1.2191411
[18] Zwiller, V. & Björk, G. Improved light extraction from emitters in high refractive index materials using solid immersion lenses. Journal of Applied Physics 92, 660-665 (2002). doi: 10.1063/1.1487913
[19] Serrels, K. A. et al. Solid immersion lens applications for nanophotonic devices. Journal of Nanophotonics 2, 021854 (2008). doi: 10.1117/1.3068652
[20] Wildanger, D. et al. Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization. Advanced Materials 24, OP309-OP313 (2012). doi: 10.1002/adma.201203033
[21] Sartison, M. et al. Combining in-situ lithography with 3D printed solid immersion lenses for single quantum dot spectroscopy. Scientific Reports 7, 39916 (2017); licensed under a Creative Commons Attribution (CC BY) license. doi: 10.1038/srep39916
[22] Bogucki, A. et al. Ultra-long-working-distance spectroscopy of single nanostructures with aspherical solid immersion microlenses. Light: Science & Applications 9, 48 (2020). doi: 10.1038/s41377-020-0284-1
[23] Briegel, H. J. et al. Quantum repeaters: the role of imperfect local operations in quantum communication. Physical Review Letters 81, 5932-5935 (1998). doi: 10.1103/PhysRevLett.81.5932
[24] Thoma, A. et al. Exploring dephasing of a solid-state quantum emitter via time-and temperature-dependent Hong-Ou-Mandel experiments. Physical Review Letters 116, 033601 (2016). doi: 10.1103/PhysRevLett.116.033601
[25] Wang, H. et al. Near-transform-limited single photons from an efficient solid-state quantum emitter. Physical Review Letters 116, 213601 (2016). doi: 10.1103/PhysRevLett.116.213601
[26] Bulgarini, G. et al. Nanowire waveguides launching single photons in a Gaussian mode for ideal fiber coupling. Nano Letters 14, 4102-4106 (2014). doi: 10.1021/nl501648f
[27] Schlehahn, A. et al. A stand-alone fiber-coupled single-photon source. Scientific Reports 8, 1340 (2018). doi: 10.1038/s41598-017-19049-4
[28] Musiał, A. et al. Plug&play fiber‐coupled 73 kHz single‐photon source operating in the telecom o‐band. Advanced Quantum Technologies 3, 2000018 (2020). doi: 10.1002/qute.202000018
[29] Dousse, A. et al. Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography. Physical Review Letters 101, 267404 (2008). doi: 10.1103/PhysRevLett.101.267404
[30] Bückmann, T. et al. Tailored 3D mechanical metamaterials made by dip‐in direct‐laser‐writing optical lithography. Advanced Materials 24, 2710-2714 (2012). doi: 10.1002/adma.201200584
[31] Schumann, M. et al. Hybrid 2D–3D optical devices for integrated optics by direct laser writing. Light: Science & Applications 3, e175 (2014). doi: 10.1038/lsa.2014.56
[32] Mueller, P., Thiel, M. & Wegener, M. 3D direct laser writing using a 405 nm diode laser. Optics Letters 39, 6847-6850 (2014). doi: 10.1364/OL.39.006847
[33] Hohmann, J. K. et al. Three-dimensional μ-printing: an enabling technology. Advanced Optical Materials 3, 1488-1507 (2015). doi: 10.1002/adom.201500328
[34] Dietrich, P. I. et al. Printed freeform lens arrays on multi-core fibers for highly efficient coupling in astrophotonic systems. Optics Express 25, 18288-18295 (2017). doi: 10.1364/OE.25.018288
[35] Jonušauskas, L. et al. Optically clear and resilient free-form μ-optics 3D-printed via ultrafast laser lithography. Materials (Basel) 10, 12 (2017). doi: 10.3390/ma10010012
[36] Colautti, M. et al. A 3D polymeric platform for photonic quantum technologies. Advanced Quantum Technologies 3, 2000004 (2020). doi: 10.1002/qute.202000004
[37] Dietrich, P. I. et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration. Nature Photonics 12, 241-247 (2018). doi: 10.1038/s41566-018-0133-4
[38] Fischer, J. & Wegener, M. Three-dimensional optical laser lithography beyond the diffraction limit. Laser & Photonics Review 7, 22-44 (2013). doi: 10.1002/lpor.201100046
[39] Gissibl, T. et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nature Photonics 10, 554-560 (2016). doi: 10.1038/nphoton.2016.121
[40] Gissibl, T. et al. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nature Communications 7, 11763 (2016). doi: 10.1038/ncomms11763
[41] Bremer, L. et al. Quantum dot single-photon emission coupled into single-mode fibers with 3D printed micro-objectives. APL Photonics 5, 106101 (2020); licensed under a Creative Commons Attribution (CC BY) license. doi: 10.1063/5.0014921
[42] Barnes, W. L. et al. Solid-state single photon sources: light collection strategies. The European Physical Journal D - Atomic,Molecular,Optical and Plasma Physics 18, 197-210 (2002). doi: 10.1140/epjd/e20020024
[43] Gerardot, B. D. et al. Contrast in transmission spectroscopy of a single quantum dot. Applied Physics Letters 90, 221106 (2007). doi: 10.1063/1.2743750
[44] Nick Vamivakas, A. et al. Spin-resolved quantum-dot resonance fluorescence. Nature Physics 5, 198-202 (2009). doi: 10.1038/nphys1182
[45] Duocastella, M. et al. Sub-wavelength laser nanopatterning using droplet lenses. Scientific Reports 5, 16199 (2015). doi: 10.1038/srep16199
[46] Ding, F. et al. Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectric-induced biaxial stress. Physical Review Letters 104, 067405 (2010). doi: 10.1103/PhysRevLett.104.067405
[47] Trotta, R. et al. Energy-tunable sources of entangled photons: a viable concept for solid-state-based quantum relays. Physical Review Letters 114, 150502 (2015). doi: 10.1103/PhysRevLett.114.150502
[48] Hartmann, A. et al. Few-particle effects in semiconductor quantum dots: observation of multicharged excitons. Physical Review Letters 84, 5648-5651 (2000). doi: 10.1103/PhysRevLett.84.5648
[49] Rickert, L. et al. Optimized designs for telecom-wavelength quantum light sources based on hybrid circular Bragg gratings. Optics Express 27, 36824-36837 (2019). doi: 10.1364/OE.27.036824
[50] Kolatschek, S. et al. Deterministic fabrication of circular Bragg gratings coupled to single quantum emitters via the combination of in-situ optical lithography and electron-beam lithography. Journal of Applied Physics 125, 045701 (2019). doi: 10.1063/1.5050344
[51] Herzog, T. et al. Pure single-photon emission from In(Ga)As QDs in a tunable fiber-based external mirror microcavity. Quantum Science and Technology 3, 034009 (2018). doi: 10.1088/2058-9565/aac64d
[52] Singhal, S. & Goswami, D. Unraveling the molecular dependence of femtosecond laser-induced thermal lens spectroscopy in fluids. Analyst 145, 929-938 (2020). doi: 10.1039/C9AN01082C
[53] Maurya, S. K., Yadav, D. & Goswami, D. Effect of femtosecond laser pulse repetition rate on nonlinear optical properties of organic liquids. PeerJ Physical Chemistry 1, e1 (2019). doi: 10.7717/peerj-pchem.1
[54] Sartison, M. Fabrication of Efficient Single-Photon Devices Based on Pre-Selected Quantum Dots Using Determinstic Optical Lithography (Verlag Dr. Hut, 2020). doi: 10.1063/1.5091751