[1] |
Zong, W. J. et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat. Methods 14, 713–719 (2017). doi: 10.1038/nmeth.4305 |
[2] |
Liberti, W. A. III et al. An open source, wireless capable miniature microscope system. J. Neural Eng. 14, 045001 (2017). doi: 10.1088/1741-2552/aa6806 |
[3] |
Corder, G. et al. An amygdalar neural ensemble that encodes the unpleasantness of pain. Science 363, 276–281 (2019). doi: 10.1126/science.aap8586 |
[4] |
de Groot, A. et al. NINscope: a versatile miniscope for multi-region circuit investigations. bioRxiv in press. |
[5] |
Ghosh, K. K. et al. Miniaturized integration of a fluorescence microscope. Nat. Methods 8, 871–878 (2011). doi: 10.1038/nmeth.1694 |
[6] |
Jacob, A. D. et al. A compact head-mounted endoscope for in vivo calcium imaging in freely behaving mice. Curr. Protoc. Neurosci. 84, e51 (2018). |
[7] |
Shuman, T. et al. Breakdown of spatial coding and interneuron synchronization in epileptic mice. Nat. Neurosci. 23, 229–238 (2020). doi: 10.1038/s41593-019-0559-0 |
[8] |
Skocek, O. et al. High-speed volumetric imaging of neuronal activity in freely moving rodents. Nat. Methods 15, 429–432 (2018). doi: 10.1038/s41592-018-0008-0 |
[9] |
Choi, J. et al. A 512-pixel, 51-kHz-frame-rate, dual-shank, lens-less, filter-less single-photon avalanche diode CMOS neural imaging probe. IEEE J. Solid-State Circuits 54, 2957–2968 (2019). doi: 10.1109/JSSC.2019.2941529 |
[10] |
Moreaux, L. C. et al. Integrated neurophotonics: toward dense volumetric interrogation of brain circuit activity—at depth and in real time. Neuron 108, 66–92 (2020). doi: 10.1016/j.neuron.2020.09.043 |
[11] |
Wetzstein, G., Ihrke, I. & Heidrich, W. On plenoptic multiplexing and reconstruction. Int. J. Comput. Vis. 101, 384–400 (2013). doi: 10.1007/s11263-012-0585-9 |
[12] |
Antipa, N. et al. DiffuserCam: lensless single-exposure 3D imaging. Optica 5, 1–9 (2018). doi: 10.1364/OPTICA.5.000001 |
[13] |
Ozcan, A. & McLeod, E. Lensless imaging and sensing. Annu. Rev. Biomed. Eng. 18, 77–102 (2016). doi: 10.1146/annurev-bioeng-092515-010849 |
[14] |
Hirsch, M. et al. A switchable light field camera architecture with Angle Sensitive Pixels and dictionary-based sparse coding. In Proc. 2014 IEEE International Conference on Computational Photography (IEEE, 2014). https://doi.org/10.1109/ICCPHOT.2014.6831813. |
[15] |
Tropp, J. A. & Gilbert, A. C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53, 4655–4666 (2007). doi: 10.1109/TIT.2007.909108 |
[16] |
Amelunxen, D. et al. Living on the edge: phase transitions in convex programs with random data. Information and Inference. J. IMA 3, 224–294 (2014). |
[17] |
Adams, J. K. et al. Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope. Sci. Adv. 3, e1701548 (2017). doi: 10.1126/sciadv.1701548 |
[18] |
Moazeni, S. et al. A mechanically flexible implantable neural interface for computational imaging and optogenetic stimulation over 5.4 × 5.4mm2 FoV. In Proc. 2021 IEEE International Solid- State Circuits Conference (IEEE, 2021). https://doi.org/10.1109/ISSCC42613.2021.9365796. |
[19] |
Sivaramakrishnan, S. et al. Design and characterization of enhanced angle sensitive pixels. IEEE Trans. Electron Devices 63, 113–119 (2016). |
[20] |
Jayasuriya, S. et al. Dual light field and polarization imaging using CMOS diffractive image sensors. Opt. Lett. 40, 2433–2436 (2015). doi: 10.1364/OL.40.002433 |
[21] |
Wang, A., Gill, P. & Molnar, A. Light field image sensors based on the Talbot effect. Appl. Opt. 48, 5897–5905 (2009). doi: 10.1364/AO.48.005897 |
[22] |
Sun, P. F., Ishihara, R. & Charbon, E. Flexible ultrathin-body single-photon avalanche diode sensors and CMOS integration. Opt. Express 24, 3734–3748 (2016). doi: 10.1364/OE.24.003734 |
[23] |
Aull, B. Geiger-mode avalanche photodiode arrays integrated to all-digital CMOS circuits. Sensors 16, 495 (2016). doi: 10.3390/s16040495 |
[24] |
Lee, C. et al. 11.5 A 512-Pixel 3kHz-frame-rate dual-shank lensless filterless single-photon-avalanche-diode CMOS neural imaging probe. In Proc. 2019 IEEE International Solid-State Circuits Conference (IEEE, 2019). https://doi.org/10.1109/ISSCC.2019.8662408. |
[25] |
Gill, P. R. et al. Robustness of planar Fourier capture arrays to colour changes and lost pixels. J. Instrum. 7, C01061 (2012). |
[26] |
Gill, P. R. Odd-symmetry phase gratings produce optical nulls uniquely insensitive to wavelength and depth. Opt. Lett. 38, 2074–2076 (2013). doi: 10.1364/OL.38.002074 |
[27] |
Li, Z. Y., Butun, S. & Aydin, K. Large-area, Lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. ACS Photonics 2, 183–188 (2015). doi: 10.1021/ph500410u |
[28] |
Aalizadeh, M. et al. Toward electrically tunable, lithography-free, ultra-thin color filters covering the whole visible spectrum. Sci. Rep. 8, 11316 (2018). doi: 10.1038/s41598-018-29544-x |
[29] |
Ordinario, D. D. et al. Stretchable structural color filters based on a metal–insulator–metal structure. Adv. Optical Mater. 6, 1800851 (2018). doi: 10.1002/adom.201800851 |
[30] |
Pimenta, S. et al. High-selectivity neural probe based on a Fabry–Perot optical filter and a CMOS silicon photodiodes array at visible wavelengths. J. Biomed. Opt. 23, 105004 (2018). |
[31] |
Gu, Y. H. et al. Color generation via subwavelength plasmonic nanostructures. Nanoscale 7, 6409–6419 (2015). doi: 10.1039/C5NR00578G |
[32] |
Yu, Y. et al. Transmissive/reflective structural color filters: theory and applications. J. Nanomaterials 2014, 212637 (2014). |
[33] |
Hong, L. Y. et al. A fully integrated CMOS fluorescence biosensor with on-chip nanophotonic filter. In Proc. 2015 Symposium on VLSI Circuits (VLSI Circuits) (IEEE, 2015). https://doi.org/10.1109/VLSIC.2015.7231260. |
[34] |
Vereecke, B. et al. Fabrication of a CMOS-based imaging chip with monolithically integrated RGB and NIR filters. Proceedings 2, 751 (2018). |
[35] |
Nesci, A. et al. Measuring amplitude and phase distribution of fields generated by gratings with sub-wavelength resolution. Opt. Commun. 205, 229–238 (2002). doi: 10.1016/S0030-4018(02)01371-8 |
[36] |
Taal, A. J., Rabinowitz, J. & Shepard, K. L. mr-EBL: ultra-high sensitivity negative-tone electron beam resist for highly selective silicon etching and large-scale direct patterning of permanent structures. Nanotechnology 32, 245302 (2021). doi: 10.1088/1361-6528/abeded |
[37] |
Nemani, K. V. et al. In vitro and in vivo evaluation of SU-8 biocompatibility. Mater. Sci. Eng.: C. 33, 4453–4459 (2013). doi: 10.1016/j.msec.2013.07.001 |
[38] |
Matarèse, B. F. E. et al. Use of SU8 as a stable and biocompatible adhesion layer for gold bioelectrodes. Sci. Rep. 8, 5560 (2018). doi: 10.1038/s41598-018-21755-6 |
[39] |
Gill, P. R. et al. A microscale camera using direct Fourier-domain scene capture. Opt. Lett. 36, 2949–2951 (2011). doi: 10.1364/OL.36.002949 |
[40] |
Shi, L. X. et al. Light field reconstruction using sparsity in the continuous Fourier domain. ACM Trans. Graph. 34, 12 (2014). |
[41] |
Levene, M. J. et al. In vivo multiphoton microscopy of deep brain tissue. J. Neurophysiol. 91, 1908–1912 (2004). doi: 10.1152/jn.01007.2003 |
[42] |
Yanny, K. et al. Miniscope3D: optimized single-shot miniature 3D fluorescence microscopy. Light.: Sci. Appl. 9, 171 (2020). doi: 10.1038/s41377-020-00403-7 |
[43] |
Vasquez-Lopez, S. A. et al. Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber. Light.: Sci. Appl. 7, 110 (2018). doi: 10.1038/s41377-018-0111-0 |
[44] |
Schwartz, D. E., Charbon, E. & Shepard, K. L. A single-photon avalanche diode array for fluorescence lifetime imaging microscopy. IEEE J. Solid-State Circuits 43, 2546–2557 (2008). doi: 10.1109/JSSC.2008.2005818 |
[45] |
Akerboom, J. et al. Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. J. Biol. Chem. 284, 6455–6464 (2009). doi: 10.1074/jbc.M807657200 |
[46] |
Choi, S. Algorithms for orthogonal nonnegative matrix factorization. In Proc. 2008 IEEE International Joint Conference on Neural Networks (IEEE, 2008). https://doi.org/10.1109/IJCNN.2008.4634046. |
[47] |
Gill, P. R., Wang, A. & Molnar, A. The in-crowd algorithm for fast basis pursuit denoising. IEEE Trans. Signal Process. 59, 4595–4605 (2011). doi: 10.1109/TSP.2011.2161292 |
[48] |
Leino, A. A., Pulkkinen, A. & Tarvainen, T. ValoMC: a Monte Carlo software and MATLAB toolbox for simulating light transport in biological tissue 2, (957–972. Continuum, OSA, 2019). |
[49] |
Chapman, G. H., Paulsen, S. & Zhang, Y. T. Characterizing long lived intralipid-infused tissue phantoms scattering using imaging sensors. In Proc. SPIE 11238, Optical Interactions with Tissue and Cells XXXI. (SPIE, 2020). https://doi.org/10.1117/12.2548689. |
[50] |
Akarçay, H. G. et al. Determining the optical properties of a gelatin-TiO2 phantom at 780 nm. Biomed. Opt. Express 3, 418–434 (2012). doi: 10.1364/BOE.3.000418 |
[51] |
Yona, G. et al. Realistic numerical and analytical modeling of light scattering in brain tissue for optogenetic applications. eNeuro 3, e0059–15.2015 (2016). |
[52] |
Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol. 58, R37–R61 (2013). |
[53] |
Kolb, K. Signal-to-noise ratio of Geiger-mode avalanche photodiode single-photon counting detectors. Optical Eng. 53, 081904 (2014). doi: 10.1117/1.OE.53.8.081904 |
[54] |
Rapp, J. & Goyal, V. K. A few photons among many: unmixing signal and noise for photon-efficient active imaging. IEEE Trans. Comput. Imaging 3, 445–459 (2017). doi: 10.1109/TCI.2017.2706028 |
[55] |
Lin, H. J., Herman, P. & Lakowicz, J. R. Fluorescence lifetime-resolved pH imaging of living cells. Cytometry A 52A, 77–89 (2003). |
[56] |
Ryder, A. G. et al. Time-domain measurement of fluorescence lifetime variation with pH. In Proc. SPIE 4259, Biomarkers and Biological Spectral Imaging (SPIE, 2001). https://doi.org/10.1117/12.432487. |
[57] |
Martin, M. M. & Lindqvist, L. The pH dependence of fluorescein fluorescence. J. Lumin. 10, 381–390 (1975). doi: 10.1016/0022-2313(75)90003-4 |
[58] |
Chesler, M. Regulation and modulation of pH in the brain. Physiol. Rev. 83, 1183–1221 (2003). doi: 10.1152/physrev.00010.2003 |
[59] |
Wemmie, J. A., Taugher, R. J. & Kreple, C. J. Acid-sensing ion channels in pain and disease. Nat. Rev. Neurosci. 14, 461–471 (2013). doi: 10.1038/nrn3529 |
[60] |
Miesenböck, G., De Angelis, D. A. & Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998). doi: 10.1038/28190 |
[61] |
Cao, H. et al. Batteryless implantable dual-sensor capsule for esophageal reflux monitoring. Gastrointest. Endosc. 77, 649–653 (2013). doi: 10.1016/j.gie.2012.10.029 |
[62] |
Arifuzzaman, M. et al. An implanted pH sensor read using radiography. Analyst 144, 2984–2993 (2019). doi: 10.1039/C8AN02337A |
[63] |
Huang, H. Y. et al. Implantable tin porphyrin-PEG hydrogels with pH-responsive fluorescence. Biomacromolecules 18, 562–567 (2017). doi: 10.1021/acs.biomac.6b01715 |
[64] |
Jayant, K. et al. Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes. Nat. Nanotechnol. 12, 335–342 (2017). doi: 10.1038/nnano.2016.268 |
[65] |
Mohanty, A. et al. Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation. Nat. Biomed. Eng. 4, 223–231 (2020). doi: 10.1038/s41551-020-0516-y |
[66] |
Pisano, F. et al. Depth-resolved fiber photometry with a single tapered optical fiber implant. Nat. Methods 16, 1185–1192 (2019). doi: 10.1038/s41592-019-0581-x |
[67] |
Pisanello, F. et al. Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics. Neuron 82, 1245–1254 (2014). doi: 10.1016/j.neuron.2014.04.041 |
[68] |
Papouin, T. et al. Obtaining acute brain slices. Bio-protocol 8, https://doi.org/10.21769/BioProtoc.2699 (2018). |