[1] Siemion, A. Terahertz diffractive optics—smart control over radiation. Journal of Infrared,Millimeter,and Terahertz Waves 40, 477-499 (2019). doi: 10.1007/s10762-019-00581-5
[2] Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications. Advances in Optics and Photonics 1, 1-57 (2009). doi: 10.1364/AOP.1.000001
[3] Wang, H. et al. Recent advances in generation of terahertz vortex beams and their applications. Chinese Physics B 29, 097404 (2020). doi: 10.1088/1674-1056/aba2df
[4] Desyatnikov, A. S., Kivshar, Y. S. & Torner, L. Optical vortices and vortex solitons. Progress in Optics 47, 291-391 (2005).
[5] Zheng, Z. et al. Efficient coupling of propagating broadband terahertz radial beams to metal wires. Optics Express 21, 10642-10650 (2013). doi: 10.1364/OE.21.010642
[6] Minkevičius, L. et al. Bessel terahertz imaging with enhanced contrast realized by silicon multi-phase diffractive optics. Optics Express 27, 36358-36367 (2019). doi: 10.1364/OE.27.036358
[7] Zhu, L. et al. Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications. Proceedings of the OFC 2014 M3K.7 (2014).
[8] Nobahar, D. & Khorram, S. Terahertz vortex beam propagation through a magnetized plasma-ferrite structure. Optics & Laser Technology 146, 107522 (2022).
[9] Wätzel, J. & Berakdar, J. Open-circuit ultrafast generation of nanoscopic toroidal moments: the swift phase generator. Advanced Quantum Technologies 2, 1970011 (2019). doi: 10.1002/qute.201970011
[10] Hibberd, M. T. et al. Acceleration of relativistic beams using laser-generated terahertz pulses. Nature Photonics 14, 755-759 (2019).
[11] Mittleman, D. M. Twenty years of terahertz imaging [Invited]. Optics Express 26, 9417-9431 (2018). doi: 10.1364/OE.26.009417
[12] Dhillon, S. S. et al. The 2017 terahertz science and technology roadmap. Journal of Physics D: Applied Physics 50, 043001 (2017). doi: 10.1088/1361-6463/50/4/043001
[13] Wang, M. et al. Longitudinal component properties of circularly polarized terahertz vortex beams. Frontiers in Physics 9, 1-8 (2021).
[14] Nanni, E. A. et al. Terahertz-driven linear electron acceleration. Nature Communications 6, 8486 (2015). doi: 10.1038/ncomms9486
[15] Zhang, C. et al. Control of the Spin Angular Momentum and Orbital Angular Momentum of a Reflected Wave by Multifunctional Graphene Metasurfaces. Materials 11, 1054 (2018). doi: 10.3390/ma11071054
[16] Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nature Photonics 7, 680-690 (2013). doi: 10.1038/nphoton.2013.184
[17] Koenig, S. et al. Wireless sub-THz communication system with high data rate. Nature Photonics 7, 977-981 (2013). doi: 10.1038/nphoton.2013.275
[18] Wei, X. et al. Orbit angular momentum encoding at 0.3 THz via 3D printed spiral phase plates. Proceedings of SPIE, 9275. Infrared, MillimeterWave, and Terahertz Technologies Ⅲ. Beijing, China: SPIE, 2014.
[19] Su, X. et al. Modal purity and LG coupling of an OAM beam reflected by a rough surface for NLoS THz links. 2021 IEEE International Conference on Communications Workshops (ICC Workshops). Montreal, Canada: IEEE, 2021.
[20] Miyamoto, K. et al. Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate. Scientific Reports 6, 38880 (2016). doi: 10.1038/srep38880
[21] He, J. et al. Generation and evolution of the terahertz vortex beam. Optics Express 21, 20230-20239 (2013). doi: 10.1364/OE.21.020230
[22] Wu, Z. et al. Vector characterization of zeroorder terahertz Bessel beams with linear and circular polarizations. Scientific Reports 7, 13929 (2017). doi: 10.1038/s41598-017-12524-y
[23] Wu, Z. et al. Vectorial diffraction properties of THz vortex Bessel beams. Optics Express 26, 1506-1520 (2018). doi: 10.1364/OE.26.001506
[24] Liu, C. et al. 3D-printed diffractive elements induced accelerating terahertz Airy beam. Optics Express 24, 29342-29348 (2016). doi: 10.1364/OE.24.029342
[25] Liu, C. et al. Terahertz circular Airy vortex beams. Scientific Reports 7, 3891 (2017). doi: 10.1038/s41598-017-04373-6
[26] Kulya, M. et al. Spatio-temporal and spatiospectral metrology of terahertz broadband uniformly topologically charged vortex beams. Applied Optics 58, A90-A100 (2019). doi: 10.1364/AO.58.000A90
[27] Bezuhanov, K. et al. Vortices in femtosecond laser fields. Optics Letters 29, 1942-1944 (2004). doi: 10.1364/OL.29.001942
[28] Wright, A. J. et al. Transfer of orbital angular momentum from a super-continuum, white-light beam. Optics Express 16, 9495-9500 (2008). doi: 10.1364/OE.16.009495
[29] Tokizane, Y., Oka, K. & Morita, R. Supercontinuum optical vortex pulse generation without spatial or topological-charge dispersion. Opt. Express 17, 14517-14525 (2009). doi: 10.1364/OE.17.014517
[30] Shvedov, V. G. et al. Efficient beam converter for the generation of high-power femtosecond vortices. Optics Letters 35, 2660-2662 (2010). doi: 10.1364/OL.35.002660
[31] Yamane, K., Toda, Y. & Morita, R. Ultrashort opticalvortex pulse generation in few-cycle regime. Optics Express 20, 18986-18993 (2012). doi: 10.1364/OE.20.018986
[32] Huang, L. et al. Dispersionless phase discontinuities for controlling light propagation. Nano Letters 12, 5750-5755 (2012). doi: 10.1021/nl303031j
[33] Sirenko, A. A. et al. Terahertz vortex beam as a spectroscopic probe of magnetic excitations. Physical Review Letters 122, 237401 (2019). doi: 10.1103/PhysRevLett.122.237401
[34] Kulya, M. S. et al. Propagation dynamics of ultrabroadband terahertz beams with orbital angular momentum for wireless data transfer. Proceedings of SPIE, 11307. Broadband Access Communication Technologies XIV. San Francisco, California, United States: SPIE, 2020.
[35] Petrov, N. V. et al. On the features of the interference of a set of broadband uniformly topologically charged beams. Proceedings of SPIE, 11499. Terahertz Emitters, Receivers, and Applications XI. Online Only: SPIE, 2020.
[36] Tsiplakova, E. G. et al. Interference enabled binary data encoding within broadband uniformly topologically charged terahertz beams. Proceedings of OSA Imaging and Applied Optics Congress 2021. Washington, DC: OSA, 2021.
[37] Tsiplakova, E. G. et al. Investigation of spectral encoding with terahertz broadband uniformly topologically charged beams. Proceedings of the 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). Chengdu, China: IEEE, 2021.
[38] Petrov, N. V. et al. Design of broadband terahertz vector and vortex beams: II. Holographic assessment. Light: Advanced Manufacturing Manuscript 3, 44 (2022).
[39] Akturk, S. et al. Spatio-temporal couplings in ultrashort laser pulses. Journal of Optics 12, 093001 (2010). doi: 10.1088/2040-8978/12/9/093001
[40] Belashov, A. V. et al. Effect of object thickness on ultrashort pulse diffraction. Applied Optics 58, 9434-9442 (2019). doi: 10.1364/AO.58.009434
[41] Borot, A. & Quéré, F. Spatio-spectral metrology at focus of ultrashort lasers: a phase-retrieval approach. Optics Express 26, 26444-26461 (2018). doi: 10.1364/OE.26.026444
[42] Sheridan, J. T. et al. Roadmap on holography. Journal of Optics 22, 123002 (2020). doi: 10.1088/2040-8986/abb3a4
[43] Pariente, G. & Quéré, F. Spatio-temporal light springs: extended encoding of orbital angular momentum in ultrashort pulses. Optics Letters 40, 2037-2040 (2015). doi: 10.1364/OL.40.002037
[44] Kondakci, H. E. & Abouraddy, A. F. Diffractionfree space–time light sheets. Nature Photonics 11, 733-740 (2017). doi: 10.1038/s41566-017-0028-9
[45] Chong, A. et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nature Photonics 14, 350-354 (2020). doi: 10.1038/s41566-020-0587-z
[46] So, I. A., Plachenov, A. B. & Kiselev, A. P. Simple unidirectional finite-energy pulses. Physical Review A 102, 063529 (2020). doi: 10.1103/PhysRevA.102.063529
[47] Bespalov, V. G. & Gorodetskiĭ, A. A. Modeling of referenceless holographic recording and reconstruction of images by means of pulsed terahertz radiation. Journal of Optical Technology 74, 745-749 (2007). doi: 10.1364/JOT.74.000745
[48] Petrov, N. V., Gorodetsky, A. A. & Bespalov, V. G. Holography and phase retrieval in terahertz imaging. Proceedings of SPIE, 8846. Terahertz Emitters, Receivers, and Applications IV. San-Diego, California, United States: SPIE, 2013.
[49] Petrov, N. V. et al. Application of Terahertz Pulse Time-Domain Holography for Phase Imaging. IEEE Transactions on Terahertz Science and Technology 6, 464-472 (2016). doi: 10.1109/TTHZ.2016.2530938
[50] Kulya, M. S. et al. Vectorial terahertz pulse timedomain holography for broadband optical wavefront sensing. Proceedings of SPIE, 11279. Millimeter, and Submillimeter-Wave Technology and Applications XⅢ. San Francisco, California, United States: SPIE, 2020.
[51] Headland, D. et al. Tutorial: Terahertz beamforming, from concepts to realizations. APL Photonics 3, 051101 (2018). doi: 10.1063/1.5011063
[52] Yang, H. et al. Terahertz orbital angular momentum: Generation, detection and communication. China Communications 18, 131-152 (2021). doi: 10.23919/JCC.2021.05.009
[53] Wakayama, T., Higashiguchi, T. & Otani, Y. Generation of the determined vectorial vortex beams by use of an achromatic axially symmetric waveplate. Optical Review 24, 449-461 (2017). doi: 10.1007/s10043-017-0315-1
[54] Beth, R. A. Mechanical detection and measurement of the angular momentum of light. Physical Review 50, 115-125 (1936). doi: 10.1103/PhysRev.50.115
[55] Allen, L. et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A 45, 8185-8189 (1992). doi: 10.1103/PhysRevA.45.8185
[56] Dholakia, K. et al. Second-harmonic generation and the orbital angular momentum of light. Physical Review A 54, R3742-R3745 (1996). doi: 10.1103/PhysRevA.54.R3742
[57] Ciattoni, A., Cincotti, G. & Palma, C. Angular momentum dynamics of a paraxial beam in a uniaxial crystal. Physical Review E 67, 036618 (2003). doi: 10.1103/PhysRevE.67.036618
[58] Desyatnikov, A. et al. Spatially engineered polarization states and optical vortices in uniaxial crystals. Optics Express 18, 10848-10863 (2010). doi: 10.1364/OE.18.010848
[59] Marrucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Physical Review Letters 96, 163905 (2006). doi: 10.1103/PhysRevLett.96.163905
[60] Pancharatnam, S. Generalized theory of interference, and its applications - Part I. Coherent pencils. Proceedings of the Indian Academy of Sciences - Section A 44, 247-262 (1956).
[61] Berry, M. The adiabatic phase and Pancharatnam’s phase for polarized light. Journal of Modern Optics 34, 1401-1407 (1987). doi: 10.1080/09500348714551321
[62] Marrucci, L. Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals. Molecular Crystals and Liquid Crystals 488, 148-162 (2008). doi: 10.1080/15421400802240524
[63] Bouchard, F. et al. Achromatic orbital angular momentum generator. New Journal of Physics 16, 123006 (2014). doi: 10.1088/1367-2630/16/12/123006
[64] Marrucci, L., Manzo, C. & Paparo, D. PancharatnamBerry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation. Applied Physics Letters 88, 221102 (2006). doi: 10.1063/1.2207993
[65] Puentes, G. Spin-orbit angular momentum conversion in metamaterials and metasurfaces. Quantum Reports 1, 91-106 (2019). doi: 10.3390/quantum1010010
[66] Niv, A. et al. Polychromatic vectorial vortex formed by geometric phase elements. Optics Letters 32, 847-849 (2007). doi: 10.1364/OL.32.000847
[67] Minasyan, A. et al. Geometric phase shaping of terahertz vortex beams. Optics Letters 42, 41-44 (2017). doi: 10.1364/OL.42.000041
[68] Kawada, Y. et al. Achromatic prism-type wave plate for broadband terahertz pulses. Optics Letters 39, 2794-2797 (2014). doi: 10.1364/OL.39.002794
[69] Wakayama, T. et al. Demonstration of a terahertz pure vector beam by tailoring geometric phase. Scientific Reports 8, 8690 (2018). doi: 10.1038/s41598-018-26964-7
[70] Ge, S. et al. Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal. Optics Express 25, 12349-12356 (2017). doi: 10.1364/OE.25.012349
[71] Shen, Z. et al. Planar terahertz photonics mediated by liquid crystal polymers. Advanced Optical Materials 8, 1902124 (2020). doi: 10.1002/adom.201902124
[72] Zhou, H. et al. Generation of terahertz vortices using metasurface with circular slits. IEEE Photonics Journal 6, 5900107 (2014).
[73] Mun, S.-E. et al. Broadband circular polarizer for randomly polarized light in few-layer metasurface. Scientific Reports 9, 2543 (2019). doi: 10.1038/s41598-019-38948-2
[74] Wang, T. et al. Dual-band high efficiency terahertz meta-devices based on reflective geometric metasurfaces. IEEE Access 7, 58131-58138 (2019). doi: 10.1109/ACCESS.2019.2912017
[75] Shi, Y. & Zhang, Y. Generation of wideband tunable orbital angular momentum vortex waves using graphene metamaterial reflectarray. IEEE Access 6, 5341-5347 (2017).
[76] Mariyenko, I. G., Strohaber, J. & Uiterwaal, C. J. G. J. Creation of optical vortices in femtosecond pulses. Optics Express 13, 7599-7608 (2005). doi: 10.1364/OPEX.13.007599
[77] Zeylikovich, I. et al. Ultrashort Laguerre – Gaussian pulses with angular. Optics Letters 32, 2025-2027 (2007). doi: 10.1364/OL.32.002025
[78] Schwarz, A. & Rudolph, W. Dispersioncompensating beam shaper for femtosecond optical vortex beams. Optics Letters 33, 2970-2972 (2008). doi: 10.1364/OL.33.002970
[79] Hancock, S. W. et al. Free-space propagation of spatiotemporal optical vortices. Optica 6, 1547-1553 (2019). doi: 10.1364/OPTICA.6.001547
[80] Wang, L. et al. Terahertz angle-multiplexed metasurface for multi-dimensional multiplexing of spatial and frequency domains. Advanced Theory and Simulations 3, 2000115 (2020). doi: 10.1002/adts.202000115
[81] Zhan, Q. & Leger, J. R. Interferometric measurement of the geometric phase in space-variant polarization manipulations. Optics Communications 213, 241-245 (2002). doi: 10.1016/S0030-4018(02)02123-5
[82] Zhou, Z., Tan, Q. & Jin, G. Cylindrically polarized vortex beams generated by subwavelength concentric Al metallic gratings. Journal of Optics 13, 075004 (2011). doi: 10.1088/2040-8978/13/7/075004
[83] Chen, W. et al. Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers. Journal of Optics 13, 015003 (2011). doi: 10.1088/2040-8978/13/1/015003
[84] Kang, M. et al. Twisted vector field from an inhomogeneous and anisotropic metamaterial. Journal of the Optical Society of America B 29, 572-576 (2012). doi: 10.1364/JOSAB.29.000572
[85] Bock, M., Jahns, J. & Grunwald, R. Few-cycle highcontrast vortex pulses. Optics Letters 37, 3804-3806 (2012). doi: 10.1364/OL.37.003804
[86] Lin, J. et al. Nanostructured holograms for broadband manipulation of vector beams. Nano Letters 13, 4269-4274 (2013). doi: 10.1021/nl402039y
[87] Wang, X. et al. Full vector measurements of converging terahertz beams with linear, circular, and cylindrical vortex polarization. Optics Express 22, 24622-24634 (2014). doi: 10.1364/OE.22.024622
[88] Xie, Z. et al. Generation of terahertz vector beams with a concentric ring metal grating and photogenerated carriers. Optics Letters 40, 359-362 (2015). doi: 10.1364/OL.40.000359
[89] Zhang, H. et al. Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime. Photonics Research 6, 24-29 (2018). doi: 10.1364/PRJ.6.000024
[90] Amer, N. et al. Generation of terahertz pulses with arbitrary elliptical polarization. Applied Physics Letters 87, 221111 (2005). doi: 10.1063/1.2138351
[91] Chang, G. et al. Generation of radially polarized terahertz pulses via velocity-mismatched optical rectification. Optics Letters 32, 433-435 (2007). doi: 10.1364/OL.32.000433
[92] Sato, M. et al. Terahertz polarization pulse shaping with arbitrary field control. Nature Photonics 7, 724-731 (2013). doi: 10.1038/nphoton.2013.213
[93] Imai, R. et al. Generation of broadband terahertz vortex beams. Optics Letters 39, 3714-3717 (2014). doi: 10.1364/OL.39.003714
[94] Dhaybi, A. A. et al. Terahertz vortex beam generation by infrared vector beam rectification. Journal of the Optical Society of America B 36, 12-18 (2019).
[95] Saito, K., Tanabe, T. & Oyama, Y. Concept of annular vector beam generation at terahertz wavelengths via a nonlinear parametric process. Applied Optics 54, 2769-2775 (2015). doi: 10.1364/AO.54.002769
[96] Lin, Q. et al. Generation of terahertz vortex pulses without any need of manipulation in the terahertz region. Optics Letters 44, 887-890 (2019). doi: 10.1364/OL.44.000887
[97] Miyamoto, K. et al. Generation of highquality terahertz OAM mode based on soft-aperture difference frequency generation. Optics Express 27, 31840-31849 (2019). doi: 10.1364/OE.27.031840
[98] Pi, H. et al. Integrated vortex beam emitter in the THz frequency range: Design and simulation. APL Photonics 5, 076102 (2020). doi: 10.1063/5.0010546
[99] Zhang, H. et al. Coherent terahertz radiation with orbital angular momentum by helically microbunched electron beam. AIP Advances 11, 055115 (2021). doi: 10.1063/5.0052083
[100] Zhang, H. et al. Narrowband terahertz emission with tunable orbital angular momentum by vortex laserbeam interaction. IEEE Photonics Journal 14, 1-8 (2022).
[101] Sobhani, H. et al. Terahertz twisted beams generation in plasma. The European Physical Journal D 70, 168 (2016). doi: 10.1140/epjd/e2016-70035-7
[102] Wang, H. et al. Terahertz necklace beams generated from two-color vortex-laser-induced air plasma. Physical Review A 98, 013857 (2018). doi: 10.1103/PhysRevA.98.013857
[103] Ivanov, M. et al. Intensity modulated terahertz vortex wave generation in air plasma by two-color femtosecond laser pulses. Optics Letters 44, 3889-3892 (2019). doi: 10.1364/OL.44.003889
[104] Ivanov, M. et al. Terahertz wave generation in air by femtosecond optical vortex pulses. Proceedings of SPIE, 11124. Terahertz Emitters, Receivers, and Applications X. San Diego, California, United States: SPIE, 2019.
[105] Sobhani, H. & Dadar, E. Terahertz vortex generation methods in rippled and vortex plasmas. Journal of the Optical Society of America A 36, 1187-1196 (2019). doi: 10.1364/JOSAA.36.001187
[106] Wang, H. et al. Generation and evolution of different terahertz singular beams from long gasplasma filaments. Optics Express 29, 996-1010 (2021). doi: 10.1364/OE.413483
[107] Wang, H. et al. Spatiotemporal instabilities of terahertz OAM beams from air plasma via chirping a few-cycle vortex pump field. Journal of Optics (2022).
[108] Wang, H. et al. Local OAM manipulation of a terahertz wave from the air filament by chirping the few-cycle vortex pump laser. Optics Express 30, 9727-9744 (2022). doi: 10.1364/OE.452414
[109] Winnerl, S. et al. Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas. Optics Express 17, 1571 (2009). doi: 10.1364/OE.17.001571
[110] Kan, K. et al. Radially polarized terahertz waves from a photoconductive antenna with microstructures. Applied Physics Letters 102, 221118 (2013). doi: 10.1063/1.4809756
[111] Kaltenecker, K. J. et al. Gouy phase shift of a tightly focused, radially polarized beam. Optica 3, 35-41 (2016). doi: 10.1364/OPTICA.3.000035
[112] Niwa, H. et al. Switchable generation of azimuthallyand radially-polarized terahertz beams from a spintronic terahertz emitter. Optics Express 29, 13331-13343 (2021). doi: 10.1364/OE.422484
[113] Chen, Y., Yang, X. & Gao, J. Spin-selective secondharmonic vortex beam generation with babinetinverted plasmonic metasurfaces. Advanced Optical Materials 6, 1800646 (2018). doi: 10.1002/adom.201800646
[114] Ponomareva, E. A. et al. Double-pump technique – one step closer towards efficient liquid-based THz sources. Optics Express 27, 32855-32862 (2019). doi: 10.1364/OE.27.032855
[115] Ponomareva, E. A. et al. Varying pre-plasma properties to boost terahertz wave generation in liquids. Communications Physics 4, 4 (2021). doi: 10.1038/s42005-020-00511-1
[116] Biener, G. et al. Formation of helical beams by use of Pancharatnam–Berry phase optical elements. Optics Letters 27, 1875-1877 (2002). doi: 10.1364/OL.27.001875
[117] Slussarenko, S. et al. Tunable liquid crystal q-plates with arbitrary topological charge. Optics Express 19, 4085-4090 (2011). doi: 10.1364/OE.19.004085
[118] Naidoo, D. et al. Controlled generation of higherorder Poincaré sphere beams from a laser. Nature Photonics 10, 327-332 (2016). doi: 10.1038/nphoton.2016.37
[119] Ji, W. et al. Meta-q-plate for complex beam shaping. Scientific Reports 6, 25528 (2016). doi: 10.1038/srep25528
[120] Larocque, H. et al. Arbitrary optical wavefront shaping via spin-to-orbit coupling. Journal of Optics 18, 124002 (2016). doi: 10.1088/2040-8978/18/12/124002
[121] Shu, W. et al. Polarization evolution of vector beams generated by q-plates. Photonics Research 5, 64-72 (2017). doi: 10.1364/PRJ.5.000064
[122] Devlin, R. C. et al. Arbitrary spin-to–orbital angular momentum conversion of light. Science 358, 896-901 (2017). doi: 10.1126/science.aao5392
[123] Cardano, F. et al. Polarization pattern of vector vortex beams generated by q-plates with different topological charges. Applied Optics 51, C1-C6 (2021).
[124] Masson, J.-B. & Gallot, G. Terahertz achromatic quarter-wave plate. Optics Letters 31, 265-267 (2006). doi: 10.1364/OL.31.000265
[125] Chen, Z. et al. Terahertz achromatic quarter wave plate: Design, fabrication, and characterization. Optics Communications 311, 1-5 (2013). doi: 10.1016/j.optcom.2013.08.039
[126] Kaveev, A. K. et al. Terahertz polarization conversion with quartz waveplate sets. Applied Optics 52, B60-B69 (2013). doi: 10.1364/AO.52.000B60
[127] Kaveev, A. K. et al. Tunable wavelength terahertz polarization converter based on quartz waveplates. Applied Optics 53, 5410-5415 (2014). doi: 10.1364/AO.53.005410
[128] Wu, L. et al. A Compact Broadband Terahertz Range Quarter-Wave Plate. Journal of Infrared,Millimeter,and Terahertz Waves 41, 642-654 (2020). doi: 10.1007/s10762-020-00686-2
[129] Yang, C.-S. et al. Liquid-crystal-enabled electrically tunable terahertz achromatic-wave plate. Proceedings of 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). Copenhagen, Denmark: IEEE, 2016.
[130] Nagai, M. et al. Achromatic THz wave plate composed of stacked parallel metal plates. Optics Letters 39, 146-149 (2014). doi: 10.1364/OL.39.000146
[131] Nagai, M. et al. Achromatic wave plate in THz frequency region based on parallel metal plate waveguides with a pillar array. Optics Express 23, 4641-4649 (2015). doi: 10.1364/OE.23.004641
[132] Zhang, B. & Gong, Y. Achromatic terahertz quarter waveplate based on silicon grating. Optics Express 23, 14897-14902 (2015). doi: 10.1364/OE.23.014897
[133] Hirota, Y. et al. Polarization modulation of terahertz electromagnetic radiation by four-contact photoconductive antenna. Optics Express 14, 4486-4493 (2006). doi: 10.1364/OE.14.004486
[134] Wakayama, T. et al. Determination of the polarization states of an arbitrary polarized terahertz beam: Vectorial vortex analysis. Scientific Reports 5, 9416 (2015). doi: 10.1038/srep09416
[135] Hsieh, C.-F. et al. Liquid-crystal-based magnetically tunable terahertz achromatic quarter-wave plate. Optics Express 27, 9933-9940 (2019). doi: 10.1364/OE.27.009933
[136] Zhang, X. et al. Tunable terahertz phase shifter based on dielectric artificial birefringence grating filled with polymer dispersed liquid crystal. Optical Materials Express 10, 282-292 (2020). doi: 10.1364/OME.383058
[137] Pancharatnam, S. Achromatic combinations of birefringent plates. Proceedings of the Indian Academy of Sciences - Section A 41, 137-144 (1955). doi: 10.1007/BF03047098
[138] Beckers, J. M. Achromatic linear retarders. Applied Optics 10, 973-975 (1971). doi: 10.1364/AO.10.000973
[139] Yang, C.-J. et al. Birefringence of orthorhombic DyScO 3: Toward a terahertz quarter-wave plate. Applied Physics Letters 118, 223506 (2021). doi: 10.1063/5.0043216
[140] Peet, V. Laser beam shaping by conical refraction in biaxial crystals. Proceedings of SPIE, 8429. Optical Modelling and Design Ⅱ. Brussels, Belgium: SPIE, 2012.
[141] Rubano, A. et al. Q-plate technology: a progress review. J. Opt. Soc. Am. B 36, D70-D87 (2019). doi: 10.1364/JOSAB.36.000D70
[142] Gecevicius, M. et al. Toward the generation of broadband optical vortices: extending the spectral range of a q-plate by polarization-selective filtering. Journal of the Optical Society of America B 35, 190-196 (2018). doi: 10.1364/JOSAB.35.000190
[143] Radwell, N. et al. Achromatic vector vortex beams from a glass cone. Nature Communications 7, 10564 (2016). doi: 10.1038/ncomms10564
[144] Wakayama, T. et al. Achromatic axially symmetric wave plate. Optics Express 20, 29260-29265 (2012). doi: 10.1364/OE.20.029260
[145] Li, J. et al. Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam–Berry coding metasurfaces. Nanoscale 11, 5746-5753 (2019). doi: 10.1039/C9NR00675C
[146] Dong, X. et al. Sub-terahertz wideband vector beam generator based on superwavelength lattice dielectric grating. Optik 193, 162991 (2019). doi: 10.1016/j.ijleo.2019.162991
[147] Rohrbach, D., Kang, B. J. & Feurer, T. 3D-printed THz wave- and phaseplates. Optics Express 29, 27160-27170 (2021). doi: 10.1364/OE.433881
[148] Hsieh, C.-F. et al. Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate. Optics Letters 31, 1112-1114 (2006). doi: 10.1364/OL.31.001112
[149] Piccirillo, B. et al. Photon spin-to-orbital angular momentum conversion via an electrically tunable q -plate. Applied Physics Letters 97, 241104 (2010). doi: 10.1063/1.3527083
[150] Yang, C.-S. et al. Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment. Applied Physics Letters 104, 141106 (2014). doi: 10.1063/1.4871255
[151] Chen, P. et al. Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings. Photonics Research 3, 133-139 (2015). doi: 10.1364/PRJ.3.000133
[152] Wang, L. et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes. Light: Science & Applications 4, e253 (2015).
[153] Sasaki, T. et al. Optical control of polarized terahertz waves using dye-doped nematic liquid crystals. AIP Advances 8, 115326 (2018). doi: 10.1063/1.5041294
[154] Vieweg, N. et al. Molecular properties of liquid crystals in the terahertz frequency range. Optics Express 18, 6097-6107 (2010). doi: 10.1364/OE.18.006097
[155] Yang, C.-S. et al. Voltage-controlled liquidcrystal terahertz phase shifter with indium–tin–oxide nanowhiskers as transparent electrodes. Optics Letters 39, 2511-2513 (2014). doi: 10.1364/OL.39.002511
[156] Yang, C.-S. et al. High-transmittance 2π tlectrically tunable terahertz phase shifter with CMOS-compatible driving voltage enabled by liquid crystals. Applied Sciences 9, 271 (2019). doi: 10.3390/app9020271
[157] Wang, L. et al. Tunable reflective liquid crystal terahertz waveplates. Optical Materials Express 7, 2023-2029 (2017). doi: 10.1364/OME.7.002023
[158] Lin, C.-J. et al. Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating. Optics Express 16, 2995-3001 (2008). doi: 10.1364/OE.16.002995
[159] Ge, S.-J. et al. Generating, separating and polarizing terahertz vortex beams via liquid crystals with gradient rotation directors. Crystals 7, 314 (2017). doi: 10.3390/cryst7100314
[160] Shen, Y. et al. Photopatterned liquid crystal mediated terahertz Bessel vortex beam generator[Invited]. Chinese Optics Letters 18, 080003 (2020). doi: 10.3788/COL202018.080003
[161] Grachev, Y. V., Kokliushkin, V. A. & Petrov, N. V. An open-source 3D-printed terahertz pulse time-domain holographic detection module for broadband beam inspection. Proceedings of 2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2020.
[162] Grachev, Y. V., Kokliushkin, V. A. & Petrov, N. V. Open-source 3D-printed terahertz pulse time-domain holographic detection module. Applied Optics 61, B307-B313 (2022). doi: 10.1364/AO.444979
[163] Shen, Y. et al. Electrically tunable terahertz focusing modulator enabled by liquid crystal integrated dielectric metasurface. Crystals 11, 514 (2021). doi: 10.3390/cryst11050514
[164] Al-Naib, I. & Withayachumnankul, W. Recent progress in terahertz metasurfaces. Journal of Infrared,Millimeter,and Terahertz Waves 38, 1067-1084 (2017). doi: 10.1007/s10762-017-0381-2
[165] Hashemi, M. R., Cakmakyapan, S. & Jarrahi, M. Reconfigurable metamaterials for terahertz wave manipulation. Reports on Progress in Physics 80, 094501 (2017). doi: 10.1088/1361-6633/aa77cb
[166] Nemati, A. et al. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electronic Advances 1, 180009 (2018).
[167] Pachava, S. et al. Generation and decomposition of scalar and vector modes carrying orbital angular momentum: a review. Optical Engineering 59, 041205 (2019).
[168] Hajian, H. et al. Active metamaterial nearly perfect light absorbers: a review[Invited]. Journal of the Optical Society of America B 36, F131-F143 (2019). doi: 10.1364/JOSAB.36.00F131
[169] Yaxin, Z. et al. Terahertz smart dynamic and active functional electromagnetic metasurfaces and their applications. Philosophical Transactions of the Royal Society A: Mathematical,Physical and Engineering Sciences 378, 20190609 (2020). doi: 10.1098/rsta.2019.0609
[170] Wei, Q. et al. Optical wavefront shaping based on functional metasurfaces. Nanophotonics 9, 987-1002 (2020). doi: 10.1515/nanoph-2019-0478
[171] Scheuer, J. Optical metasurfaces are coming of age: short- and long-term opportunities for commercial applications. ACS Photonics 7, 1323-1354 (2020). doi: 10.1021/acsphotonics.9b01719
[172] Zang, X. et al. Metasurfaces for manipulating terahertz waves. Light: Advanced Manufacturing 2, 10 (2021).
[173] Cao, G. et al. Infrared metasurface-enabled compact polarization nanodevices. Materials Today 50, 499-515 (2021). doi: 10.1016/j.mattod.2021.06.014
[174] Ding, F., Tang, S. & Bozhevolnyi, S. I. Recent advances in polarization-encoded optical metasurfaces. Advanced Photonics Research 2, 2000173 (2021). doi: 10.1002/adpr.202000173
[175] Chang, Z. et al. A reconfigurable graphene reflectarray for generation of vortex THz waves. IEEE Antennas and Wireless Propagation Letters 15, 1537-1540 (2016). doi: 10.1109/LAWP.2016.2519545
[176] Chiang, Y.-J. & Yen, T.-J. A compositemetamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission. Applied Physics Letters 102, 011129 (2013). doi: 10.1063/1.4774300
[177] Hernandez-Serrano, A. I., Castro-Camus, E. & Lopez-Mago, D. q-plate for the generation of terahertz cylindrical vector beams fabricated by 3D printing. Journal of Infrared,Millimeter,and Terahertz Waves 38, 938-944 (2017). doi: 10.1007/s10762-017-0396-8
[178] Hernandez-Serrano, A. I., Castro-Camus, E. & Lopez-Mago, D. Pancharatnam-Berry phase optical elements fabricated by 3D printing for shaping terahertz beams. Proceedings of SPIE, 10347. Optical Trapping and Optical Micromanipulation XIV. San Diego, California, United States: SPIE, 2017.
[179] Xu, S.-T. et al. Terahertz polarization mode conversion in compound metasurface. Applied Physics Letters 111, 031107 (2017). doi: 10.1063/1.4994156
[180] Dong, X.-P. et al. Wideband sub-THz half-wave plate using 3D-printed low-index metagratings with superwavelength lattice. Optics Express 27, 202-211 (2019). doi: 10.1364/OE.27.000202
[181] Zeng, H. et al. Broadband terahertz reconfigurable metasurface based on 1-bit asymmetric coding metamaterial. Optics Communications 458, 124770 (2020). doi: 10.1016/j.optcom.2019.124770
[182] Wang, D. et al. Multiband switchable terahertz quarter-wave plates via phase-change metasurfaces. IEEE Photonics Journal 8, 5500308 (2016).
[183] Zhang, R. et al. Broadband and switchable terahertz polarization converter based on graphene metasurfaces. Optics Express 29, 24804-24815 (2021). doi: 10.1364/OE.432601
[184] Sun, L. et al. Achromatic terahertz quarter-wave retarder in reflection mode. Applied Physics B 106, 393-398 (2012). doi: 10.1007/s00340-011-4723-9
[185] Cong, L. et al. Highly flexible broadband terahertz metamaterial quarter-wave plate. Laser & Photonics Reviews 8, 626-632 (2014).
[186] Cong, L. et al. A tunable dispersion-free terahertz metadevice with Pancharatnam-Berry-phase-eabled modulation and polarization control. Advanced Materials 27, 6630-6636 (2015). doi: 10.1002/adma.201502716
[187] Ke, X. et al. Double-stacked hyperbolic metamaterial waveguide arrays for efficient and broadband terahertz quarter-wave plates. Scientific Reports 7, 574 (2017). doi: 10.1038/s41598-017-00726-3
[188] Yuan, Y. et al. Terahertz dual-band polarization control and wavefront shaping over freestanding dielectric binary gratings with high efficiency. Optics and Lasers in Engineering 143, 106636 (2021). doi: 10.1016/j.optlaseng.2021.106636
[189] Mu, Q. et al. Broadband phase shift engineering for terahertz waves based on dielectric metasurface. Optics Communications 434, 12-18 (2019). doi: 10.1016/j.optcom.2018.10.039
[190] Scheller, M., Jördens, C. & Koch, M. Terahertz form birefringence. Optics Express 18, 10137-10142 (2010). doi: 10.1364/OE.18.010137
[191] Kruk, S. et al. Invited Article: Broadband highly efficient dielectric metadevices for polarization control. APL Photonics 1, 030801 (2016). doi: 10.1063/1.4949007
[192] Song, Q. et al. Broadband decoupling of intensity and polarization with vectorial Fourier metasurfaces. Nature Communications 12, 3631 (2021). doi: 10.1038/s41467-021-23908-0
[193] Lin, Z., Ba, Z. & Wang, X. Broadband high-efficiency electromagnetic orbital angular momentum beam generation based on a dielectric metasurface. IEEE Photonics Journal 12, 4600611 (2020).
[194] Tang, S. et al. High-efficiency broadband vortex beam generator based on transmissive metasurface. Optics Express 27, 4281-4291 (2019). doi: 10.1364/OE.27.004281
[195] Dharmavarapu, R. et al. Dielectric cross-shapedresonator-based metasurface for vortex beam generation at mid-IR and THz wavelengths. Nanophotonics 8, 1263-1270 (2019). doi: 10.1515/nanoph-2019-0112
[196] Li, J.-S. & Zhang, L.-N. Simple terahertz vortex beam generator based on reflective metasurfaces. Optics Express 28, 36403 (2020). doi: 10.1364/OE.410681
[197] Makarevich, A. et al. Hydrothermal epitaxy growth of self-organized vanadium dioxide 3D structures with metal–insulator transition and THz transmission switch properties. CrystEngComm 22, 2612-2620 (2020). doi: 10.1039/C9CE01894H
[198] Kaydashev, V. E. et al. Electrically reduced optical switching threshold of VO2-based THz metasurface. arXiv 2204.13427 (2022).
[199] Wang, H., Ling, F. & Zhang, B. Tunable metasurfaces for independent control of linearly and circularly polarized terahertz waves. Optics Express 28, 36316-36326 (2020). doi: 10.1364/OE.405885
[200] Soleimani, H. & Oraizi, H. Programmable terahertz vortex beam reflectarray antenna based on a graphene phoenix unit cell. Journal of Physics D: Applied Physics 54, 165302 (2021). doi: 10.1088/1361-6463/abd72b