[1] Jin, S. X. et al. GaN microdisk light emitting diodes. Appl. Phys. Lett. 76, 631–633 (2000). doi: 10.1063/1.125841
[2] Day, J. et al. Full-scale self-emissive blue and green microdisplays based on GaN micro-LED arrays. In Proc. SPIE 8268, Quantum Sensing and Nanophotonic Devices IX (SPIE, San Francisco, CA, USA, 2012).
[3] Tian, P. F. et al. Fabrication, characterization and applications of flexible vertical InGaN micro-light emitting diode arrays. Opt. Express 24, 699–707 (2016). doi: 10.1364/OE.24.000699
[4] Liu, Z. J. et al. Monolithic LED microdisplay on active matrix substrate using flip-chip technology. IEEE J. Sel. Top. Quantum Electron. 15, 1298–1302 (2009). doi: 10.1109/JSTQE.2009.2015675
[5] Liu, Z. J. et al. Fully multi-functional GaN-based micro-LEDs for 2500 PPI micro-displays, temperature sensing, light energy harvesting, and light detection. In Proc. 2018 IEEE International Electron Devices Meeting pp. 38.1.1–38.1.4. (IEEE, San Francisco, CA, USA, 2018).
[6] Zhang, K. et al. Fully-integrated active matrix programmable UV and blue micro-LED display system-on-panel (SoP). J. Soc. Inf. Disp. 25, 240–248 (2017). doi: 10.1002/jsid.550
[7] Zhang, X. et al. Active matrix monolithic LED micro-display using GaN-on-Si epilayers. IEEE Photon. Technol. Lett. 31, 865–868 (2019). doi: 10.1109/LPT.2019.2910729
[8] Phillips, J. M. et al. Research challenges to ultra-efficient inorganic solid-state lighting. Laser Photon. Rev. 1, 307–333 (2007). doi: 10.1002/lpor.200710019
[9] Krames, M. R. et al. Status and future of high-power light-emitting diodes for solid-state lighting. J. Disp. Technol. 3, 160–175 (2007). doi: 10.1109/JDT.2007.895339
[10] Usami, S. et al. Correlation between dislocations and leakage current of p-n diodes on a free-standing GaN substrate. Appl. Phys. Lett. 112, 182106 (2018). doi: 10.1063/1.5024704
[11] Jiang, Y. et al. Realization of high-luminous-efficiency InGaN light-emitting diodes in the "green gap" range. Sci. Rep. 5, 10883 (2015). doi: 10.1038/srep10883
[12] Cho, J. et al. White light-emitting diodes: history, progress, and future. Laser Photon. Rev. 11, 1600147 (2017). doi: 10.1002/lpor.201600147
[13] Bulashevich, K. A. & Karpov, S. Y. Impact of surface recombination on efficiency of Ⅲ-nitride light-emitting diodes. Phys. Status Solidi RRL 10, 480–484 (2016). doi: 10.1002/pssr.201600059
[14] Hwang, D. et al. Sustained high external quantum efficiency in ultrasmall blue Ⅲ-nitride micro-LEDs. Appl. Phys. Express 10, 032101 (2017). doi: 10.7567/APEX.10.032101
[15] Lin, C. C. & Liu, R. S. Advances in phosphors for light-emitting diodes. J. Phys. Chem. Lett. 2, 1268–1277 (2011). doi: 10.1021/jz2002452
[16] Abe, S. et al. Hybrid remote quantum dot/powder phosphor designs for display backlights. Light. Sci. Appl. 6, e16271 (2017). doi: 10.1038/lsa.2016.271
[17] Supran, G. J. et al. High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots. Adv. Mater. 27, 1437–1442 (2015). doi: 10.1002/adma.201404636
[18] Zhu, S. J. et al. Photoluminescence mechanism in graphene quantum dots: quantum confinement effect and surface/edge state. Nano Today 13, 10–14 (2017). doi: 10.1016/j.nantod.2016.12.006
[19] Shirasaki, Y. et al. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photon. 7, 13–23 (2013). doi: 10.1038/nphoton.2012.328
[20] Zhu, R. D. et al. Realizing Rec. 2020 color gamut with quantum dot displays. Opt. Express 23, 23680–23693 (2015). doi: 10.1364/OE.23.023680
[21] Steckel, J. S. et al. Quantum dots: the ultimate down-conversion material for LCD displays. J. Soc. Inf. Disp. 23, 294–305 (2015). doi: 10.1002/jsid.313
[22] Wang, L. et al. Highly efficient narrow-band green and red phosphors enabling wider color-gamut LED backlight for more brilliant displays. Opt. Express 23, 28707–28717 (2015). doi: 10.1364/OE.23.028707
[23] Tsai, Y. T. et al. Improvement of the water resistance of a narrow-band red-emitting SrLiAl3N4: Eu2+ phosphor synthesized under high isostatic pressure through coating with an organosilica layer. Angew. Chem. Int. Ed. 55, 9652–9656 (2016). doi: 10.1002/anie.201604427
[24] Luo, D. et al. Realizing superior white LEDs with both high R9 and luminous efficacy by using dual red phosphors. RSC Adv. 7, 25964–25968 (2017). doi: 10.1039/C7RA04614F
[25] Kim, Y. S. et al. Red-emitting (Sr, Ca)AlSiN3: Eu2+ phosphors synthesized by spark plasma sintering. ECS J. Solid State Sci. Technol. 2, R3021–R3025 (2013). doi: 10.1149/2.008302jss
[26] Xia, Q. et al. Quantum yield of Eu2+ emission in (Ca1-xSrx)S: Eu light emitting diode converter at 20-420 K. Radiat. Meas. 45, 350–352 (2010). doi: 10.1016/j.radmeas.2009.09.010
[27] Ito, Y. et al. A backlight system with a phosphor sheet providing both wider color gamut and higher efficiency. SID Symp. Dig. Tech. Pap. 44, 816–819 (2013). doi: 10.1002/j.2168-0159.2013.tb06342.x
[28] Kim, D. H., Ryu, J. H. & Cho, S. Y. Light emitting properties of SiAlON: Eu2+ green phosphor. Appl. Phys. A 102, 79–83 (2011). doi: 10.1007/s00339-010-6126-x
[29] Martin, L. I. D. J. et al. Microscopic study of dopant distribution in europium doped SrGa2S4: impact on thermal quenching and phosphor performance. ECS J. Solid State Sci. Technol. 7, R3052–R3056 (2018). doi: 10.1149/2.0341709jss
[30] Krotkus, S. et al. Adjustable white-light emission from a photo-structured micro-OLED array. Light. Sci. Appl. 5, e16121 (2016). doi: 10.1038/lsa.2016.121
[31] Chen, H. W. et al. Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light. Sci. Appl. 7, 17168 (2018). doi: 10.1038/lsa.2017.168
[32] Kim, S. et al. Degradation of blue-phosphorescent organic light-emitting devices involves exciton-induced generation of polaron pair within emitting layers. Nat. Commun. 9, 1211 (2018). doi: 10.1038/s41467-018-03602-4
[33] Kawabe, Y. & Abe, J. Electron mobility measurement using exciplex-type organic light-emitting diodes. Appl. Phys. Lett. 81, 493–495 (2002). doi: 10.1063/1.1494105
[34] Le Minh, H. et al. 100-Mb/s NRZ visible light communications using a postequalized white LED. IEEE Photon. Technol. Lett. 21, 1063–1065 (2009). doi: 10.1109/LPT.2009.2022413
[35] Wu, T. Z. et al. Mini-LED and micro-LED: promising candidates for the next generation display technology. Appl. Sci. 8, 1557 (2018). doi: 10.3390/app8091557
[36] Kim, T. H. et al. Bright and stable quantum dots and their applications in full-color displays. MRS Bull. 38, 712–720 (2013). doi: 10.1557/mrs.2013.184
[37] Global quantum dot display market analysis & forecast 2017 to 2023. https://www.kennethresearch.com/report-details/global-quantum-dot-display-market/10043101 (2019).
[38] Wang, L. S. et al. Blue quantum dot light-emitting diodes with high electroluminescent efficiency. ACS Appl. Mater. Interfaces 9, 38755–38760 (2017). doi: 10.1021/acsami.7b10785
[39] Dai, X. L. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014). doi: 10.1038/nature13829
[40] Manders, J. R. et al. High efficiency and ultra-wide color gamut quantum dot LEDs for next generation displays. J. Soc. Inf. Disp. 23, 523–528 (2015). doi: 10.1002/jsid.393
[41] Zeng, W. X. et al. Achieving nearly 30% external quantum efficiency for orange–red organic light emitting diodes by employing thermally activated delayed fluorescence emitters composed of 1, 8-naphthalimide-acridine hybrids. Adv. Mater. 30, 1704961 (2018). doi: 10.1002/adma.201704961
[42] Tsai, K. W. et al. Solution-processed thermally activated delayed fluorescent OLED with high EQE as 31% using high triplet energy crosslinkable hole transport materials. Adv. Funct. Mater. 29, 1901025 (2019). doi: 10.1002/adfm.201901025
[43] Moon, H. et al. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv. Mater. 31, 1804294 (2019). doi: 10.1002/adma.201804294
[44] Chichibu, S. F. et al. Origin of defect-insensitive emission probability in In-containing (Al, In, Ga)N alloy semiconductors. Nat. Mater. 5, 810–816 (2006). doi: 10.1038/nmat1726
[45] Paranjpe, A. et al. Micro-LED displays: key manufacturing challenges and solutions. SID Symp. Dig. Tech. Pap. 49, 597–600 (2018). doi: 10.1002/sdtp.12414
[46] Olivier, F. et al. Influence of size-reduction on the performances of GaN-based micro-LEDs for display application. J. Lumin. 191, 112–116 (2017). doi: 10.1016/j.jlumin.2016.09.052
[47] Wong, M. S. et al. Size-independent peak efficiency of Ⅲ-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation. Appl. Phys. Express 12, 097004 (2019). doi: 10.7567/1882-0786/ab3949
[48] Virey, E. H. & Baron, N. Status and prospects of microLED displays. SID Symp. Dig. Tech. Pap. 49, 593–596 (2018). doi: 10.1002/sdtp.12415
[49] Wong, M. S. et al. High efficiency of Ⅲ-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition. Opt. Express 26, 21324–21331 (2018). doi: 10.1364/OE.26.021324
[50] Olivier, F. et al. Investigation and improvement of 10 μm pixel-pitch GaN-based micro-LED arrays with very high brightness. SID Symp. Dig. Tech. Pap. 48, 353–356 (2017). doi: 10.1002/sdtp.11615
[51] Zhu, D., Wallis, D. J. & Humphreys, C. J. Prospects of Ⅲ-nitride optoelectronics grown on Si. Rep. Prog. Phys. 76, 106501 (2013). doi: 10.1088/0034-4885/76/10/106501
[52] Aida, H. et al. Effect of initial bow of sapphire substrate on substrate curvature during ingan growth stage of light emitting diode epitaxy. Jpn J. Appl. Phys. 51, 012102 (2012). doi: 10.1143/JJAP.51.012102
[53] Lim, S. H. et al. Electrically driven, phosphor-free, white light-emitting diodes using gallium nitride-based double concentric truncated pyramid structures. Light Sci. Appl. 5, e16030 (2016). doi: 10.1038/lsa.2016.30
[54] Fu, H. C. et al. MXene-contacted silicon solar cells with 11.5% efficiency. Adv. Energy Mater. 9, 1900180 (2019).
[55] Zhan, J. L. et al. Investigation on strain relaxation distribution in GaN-based μLEDs by Kelvin probe force microscopy and micro-photoluminescence. Opt. Express 26, 5265–5274 (2018). doi: 10.1364/OE.26.005265
[56] Chaji, R., Fathi, E. & Zamani, A. Low-cost micro-LED displays for all applications. SID Symp. Dig. Tech. Pap. 48, 264–267 (2017). doi: 10.1002/sdtp.11683
[57] Zhang, H. & Rogers, J. A. Recent advances in flexible inorganic light emitting diodes: from materials design to integrated optoelectronic platforms. Adv. Optical Mater. 7, 1800936 (2019). doi: 10.1002/adom.201800936
[58] Kim, H. S. et al. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting. Proc. Natl Acad. Sci. USA 108, 10072–10077 (2011). doi: 10.1073/pnas.1102650108
[59] Menard, E. et al. A printable form of silicon for high performance thin film transistors on plastic substrates. Appl. Phys. Lett. 84, 5398–5400 (2004). doi: 10.1063/1.1767591
[60] Meitl, M. A. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5, 33–38 (2006). doi: 10.1038/nmat1532
[61] Bower, C. A. et al. Heterogeneous integration of microscale compound semiconductor devices by micro-transfer-printing. In Proc. 2015 IEEE 65th Electronic Components and Technology Conference. p. 963–967 (IEEE, San Diego, CA, USA, 2015).
[62] Meitl, M. et al. Passive matrix displays with transfer-printed microscale inorganic LEDs. SID Symp. Dig. Tech. Pap. 47, 743–746 (2016). doi: 10.1002/sdtp.10748
[63] Bibl, A. et al. Method of forming a micro light emitting diode array. 8426227. (2013).
[64] Golda, D. & Bibl, A. Micro device transfer head array. 9548233. (2017).
[65] Wu, M. H., Fang, Y. H. & Chao, C. H. Electric-programmable magnetic module. 10147622. (2017).
[66] Wu, M. H., Fang, Y. H. & Chao, C. H. Electric-programmable magnetic module and picking-up and placement process for electronic devices. 20160172253. (2016).
[67] Holmes, A. S. & Saidam, S. M. Sacrificial layer process with laser-driven release for batch assembly operations. J. Microelectromech. Syst. 7, 416–422 (1998). doi: 10.1109/84.735350
[68] Marinov, V. et al. Laser-enabled advanced packaging of ultrathin bare dice in flexible substrates. IEEE Trans. Compon. Packag. Manuf. Technol. 2, 569–577 (2012). doi: 10.1109/TCPMT.2011.2176941
[69] Marinov, V. R. Laser-enabled extremely-high rate technology for µLED assembly. SID Symp. Dig. Tech. Pap. 49, 692–695 (2018). doi: 10.1002/sdtp.12352
[70] Ding, K. et al. Micro-LEDs, a manufacturability perspective. Appl. Sci. 9, 1206 (2019). doi: 10.3390/app9061206
[71] Yeh, H. J. J. & Smith, J. S. Fluidic self-assembly for the integration of gaas light-emitting diodes on Si substrates. IEEE Photon. Technol. Lett. 6, 706–708 (1994). doi: 10.1109/68.300169
[72] Sasaki, K. et al. System and method for the fluidic assembly of emissive displays. 20170133558. (2017).
[73] Saeedi, E., Kim, S. & Parviz, B. A. Self-assembled crystalline semiconductor optoelectronics on glass and plastic. J. Micromech. Microeng. 18, 075019 (2008). doi: 10.1088/0960-1317/18/7/075019
[74] Choi, M. et al. Stretchable active matrix inorganic light-emitting diode display enabled by overlay-aligned roll-transfer printing. Adv. Funct. Mater. 27, 1606005 (2017). doi: 10.1002/adfm.201606005
[75] Henry, W. & Percival, C. ILED displays: next generation display technology. SID Symp. Dig. Tech. Pap. 47, 747–750 (2016). doi: 10.1002/sdtp.10750
[76] Jiang, H. X. et al. Ⅲ-nitride blue microdisplays. Appl. Phys. Lett. 78, 1303–1305 (2001). doi: 10.1063/1.1351521
[77] Lee, V. W., Twu, N. & Kymissis, I. Micro-LED technologies and applications. Inf. Disp. 32, 16–23 (2016).
[78] Peng, D., Zhang, K. & Liu, Z. J. Design and fabrication of fine-pitch pixelated-addressed micro-LED arrays on printed circuit board for display and communication applications. IEEE J. Electron Devices Soc. 5, 90–94 (2017). doi: 10.1109/JEDS.2016.2631220
[79] Kim, H. H. et al. Thermal transient characteristics of die attach in high power LED PKG. Microelectron. Reliab. 48, 445–454 (2008). doi: 10.1016/j.microrel.2007.08.009
[80] Day, J. et al. Ⅲ-Nitride full-scale high-resolution microdisplays. Appl. Phys. Lett. 99, 031116 (2011). doi: 10.1063/1.3615679
[81] Templier, F. et al. GaN-based emissive microdisplays: a very promising technology for compact, ultra‐high brightness display systems. SID Symp. Dig. Tech. Pap. 47, 1013–1016 (2016). doi: 10.1002/sdtp.10892
[82] Kang, C. M. et al. Monolithic integration of AlGaInP-based red and InGaN-based green LEDs via adhesive bonding for multicolor emission. Sci. Rep. 7, 10333 (2017). doi: 10.1038/s41598-017-11239-4
[83] Jeong, C. K. et al. Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy Environ. Sci. 7, 4035–4043 (2014). doi: 10.1039/C4EE02435D
[84] Lee, S. H. et al. Optogenetic control of body movements via flexible vertical light-emitting diodes on brain surface. Nano Energy 44, 447–455 (2018). doi: 10.1016/j.nanoen.2017.12.011
[85] Kang, C. M. et al. Hybrid full-color inorganic light-emitting diodes integrated on a single wafer using selective area growth and adhesive bonding. ACS Photon. 5, 4413–4422 (2018). doi: 10.1021/acsphotonics.8b00876
[86] Han, H. V. et al. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology. Opt. Express 23, 32504–32515 (2015). doi: 10.1364/OE.23.032504
[87] Lin, H. Y. et al. Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold. Photon. Res. 5, 411–416 (2017). doi: 10.1364/PRJ.5.000411
[88] Chen, G. S. et al. Monolithic red/green/blue micro-LEDs with HBR and DBR structures. IEEE Photon. Technol. Lett. 30, 262–265 (2018). doi: 10.1109/LPT.2017.2786737
[89] Sabnis, R. W. Color filter technology for liquid crystal displays. Displays 20, 119–129 (1999). doi: 10.1016/S0141-9382(99)00013-X
[90] Osinski, J. & Palomaki, P. Quantum dot design criteria for color conversion in microLED displays. SID Symp. Dig. Tech. Pap. 50, 34–37 (2019). doi: 10.1002/sdtp.12849
[91] Lee, E. et al. Quantum dot conversion layers through inkjet printing. SID Symp. Dig. Tech. Pap. 49, 525–527 (2018). doi: 10.1002/sdtp.12452
[92] Clapp, A. R., Medintz, I. L. & Mattoussi, H. Förster resonance energy transfer investigations using quantum-dot fluorophores. ChemPhysChem 7, 47–57 (2006). doi: 10.1002/cphc.200500217
[93] Chanyawadee, S. et al. Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer. Adv. Mater. 22, 602–606 (2010). doi: 10.1002/adma.200902262
[94] Zhao, C. et al. Droop-free, reliable, and high-power InGaN/GaN nanowire light-emitting diodes for monolithic metal-optoelectronics. Nano Lett. 16, 4616–4623 (2016). doi: 10.1021/acs.nanolett.6b01945
[95] Achermann, M. et al. Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well. Nature 429, 642–646 (2004). doi: 10.1038/nature02571
[96] Krishnan, C. et al. Hybrid photonic crystal light-emitting diode renders 123% color conversion effective quantum yield. Optica 3, 503–509 (2016). doi: 10.1364/OPTICA.3.000503
[97] Zhuang, Z. et al. High color rendering index hybrid Ⅲ-nitride/nanocrystals white light-emitting diodes. Adv. Funct. Mater. 26, 36–43 (2016). doi: 10.1002/adfm.201502870
[98] Liu, C. Y. et al. Color-conversion efficiency enhancement of quantum dots via selective area nano-rods light-emitting diodes. Opt. Express 24, 19978–19987 (2016). doi: 10.1364/OE.24.019978
[99] Wang, S. W. et al. Wavelength tunable InGaN/GaN nano-ring LEDs via nano-sphere lithography. Sci. Rep. 7, 42962 (2017). doi: 10.1038/srep42962
[100] Ryou, J. H. et al. Control of quantum-confined stark effect in InGaN-based quantum wells. IEEE J. Sel. Top. Quant. Electron. 15, 1080–1091 (2009). doi: 10.1109/JSTQE.2009.2014170
[101] Huang Chen, S. W. et al. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer. Photon. Res. 7, 416–422 (2019). doi: 10.1364/PRJ.7.000416
[102] Ippen, C. et al. High efficiency heavy metal free QD-LEDs for next generation displays. J. Soc. Inf. Disp. 27, 338–346 (2019). doi: 10.1002/jsid.780
[103] Reiss, P. et al. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials. Chem. Rev. 116, 10731–10819 (2016). doi: 10.1021/acs.chemrev.6b00116
[104] Li, Y. et al. Stoichiometry-controlled InP-based quantum dots: synthesis, photoluminescence, and electroluminescence. J. Am. Chem. Soc. 141, 6448–6452 (2019). doi: 10.1021/jacs.8b12908
[105] Wang, H. C. et al. Perovskite quantum dots and their application in light-emitting diodes. Small 14, 1702433 (2018). doi: 10.1002/smll.201702433
[106] NREL. Research cell record efficiency chart. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190802.pdf (2019).
[107] Wei, T. C. et al. Nonlinear absorption applications of CH3NH3PbBr3 perovskite crystals. Adv. Funct. Mater. 28, 1707175 (2018). doi: 10.1002/adfm.201707175
[108] Cheng, B. et al. Extremely reduced dielectric confinement in two-dimensional hybrid perovskites with large polar organics. Commun. Phys. 1, 80 (2018). doi: 10.1038/s42005-018-0082-8
[109] Dong, Q. F. et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015). doi: 10.1126/science.aaa5760
[110] Kang, J. & Wang, L. W. High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 8, 489–493 (2017). doi: 10.1021/acs.jpclett.6b02800
[111] Schmidt, L. C. et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 136, 850–853 (2014). doi: 10.1021/ja4109209
[112] Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015). doi: 10.1021/nl5048779
[113] Shamsi, J. et al. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119, 3296–3348 (2019). doi: 10.1021/acs.chemrev.8b00644
[114] Liu, F. et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano 11, 10373–10383 (2017). doi: 10.1021/acsnano.7b05442
[115] Swarnkar, A. et al. Colloidal CsPbBr3 perovskite nanocrystals: luminescence beyond traditional quantum dots. Angew. Chem. 127, 15644–15648 (2015). doi: 10.1002/ange.201508276
[116] Mondal, N., De, A. & Samanta, A. Achieving near-unity photoluminescence efficiency for blue-violet-emitting perovskite nanocrystals. ACS Energy Lett. 4, 32–39 (2019). doi: 10.1021/acsenergylett.8b01909
[117] Ko, Y. H. et al. Super ultra-high resolution liquid-crystal-display using perovskite quantum-dot functional color-filters. Sci. Rep. 8, 12881 (2018). doi: 10.1038/s41598-018-30742-w
[118] Ko, Y. H. & Park, J. G. Novel quantum dot enhancement film with a super-wide color gamut for LCD displays. J. Korean Phys. Soc. 72, 45–51 (2018). doi: 10.3938/jkps.72.45
[119] Lin, K. B. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018). doi: 10.1038/s41586-018-0575-3
[120] Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018). doi: 10.1038/s41586-018-0576-2
[121] Xu, W. D. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13, 418–424 (2019). doi: 10.1038/s41566-019-0390-x
[122] Kang, C. Y. et al. Highly efficient and stable white light‐emitting diodes using perovskite quantum dot paper. Adv. Sci. 6, 1902230 (2019). doi: 10.1002/advs.201902230
[123] Zhou, Q. C. et al. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights. Adv. Mater. 28, 9163–9168 (2016). doi: 10.1002/adma.201602651
[124] Yoon, H. C. et al. Efficient and stable CsPbBr3 quantum-dot powders passivated and encapsulated with a mixed silicon nitride and silicon oxide inorganic polymer matrix. ACS Appl. Mater. Interfaces 10, 11756–11767 (2018). doi: 10.1021/acsami.8b01014
[125] Wei, Y., Cheng, Z. Y. & Lin, J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev. 48, 310–350 (2019). doi: 10.1039/C8CS00740C
[126] Zhou, Y. Y. & Zhao, Y. X. Chemical stability and instability of inorganic halide perovskites. Energy Environ. Sci. 12, 1495–1511 (2019). doi: 10.1039/C8EE03559H
[127] Cho, H. et al. Improving the stability of metal halide perovskite materials and light-emitting diodes. Adv. Mater. 30, 1704587 (2018). doi: 10.1002/adma.201704587
[128] Wang, R. et al. A review of perovskites solar cell stability. Adv. Funct. Mater. 29, 1808843 (2019). doi: 10.1002/adfm.201808843
[129] Lv, W. Z. et al. Improving the stability of metal halide perovskite quantum dots by encapsulation. Adv. Mater. 31, 1900682 (2019). doi: 10.1002/adma.201900682
[130] Xu, L. et al. A comprehensive review of doping in perovskite nanocrystals/quantum dots: evolution of structure, electronics, optics, and light-emitting diodes. Mater. Today Nano 6, 100036 (2019). doi: 10.1016/j.mtnano.2019.100036
[131] Zhou, Y. et al. Metal-doped lead halide perovskites: synthesis, properties, and optoelectronic applications. Chem. Mater. 30, 6589–6613 (2018). doi: 10.1021/acs.chemmater.8b02989
[132] Hasegawa, H. et al. Effective band gap tuning by foreign metal doping in hybrid tin iodide perovskites. J. Mater. Chem. C 5, 4048–4052 (2017). doi: 10.1039/C7TC00446J
[133] Wang, X. et al. Could nanocomposites continue the success of halide perovskites? ACS Energy Lett. 4, 1446–1454 (2019). doi: 10.1021/acsenergylett.9b00580
[134] Wang, Y. B. et al. Stabilizing heterostructures of soft perovskite semiconductors. Science 365, 687–691 (2019). doi: 10.1126/science.aax8018
[135] De Roo, J. et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10, 2071–2081 (2016). doi: 10.1021/acsnano.5b06295
[136] Li, Q. H. et al. Solid ligand-assisted storage of air-stable formamidinium lead halide quantum dots via restraining the highly dynamic surface toward brightly luminescent light-emitting diodes. ACS Photon. 4, 2504–2512 (2017). doi: 10.1021/acsphotonics.7b00743
[137] Minh, D. N. et al. Perovskite nanoparticle composite films by size exclusion lithography. Adv. Mater. 30, 1802555 (2018). doi: 10.1002/adma.201802555
[138] Lin, C. H. et al. Orthogonal lithography for halide perovskite optoelectronic nanodevices. ACS Nano 13, 1168–1176 (2019).
[139] Lin, C. H. et al. Hybrid-type white LEDs based on inorganic halide perovskite QDs: candidates for wide color gamut display backlights. Photon. Res. 7, 579–585 (2019). doi: 10.1364/PRJ.7.000579
[140] Zhou, J. C. et al. Inorganic halide perovskite quantum dot modified YAG-based white LEDs with superior performance. J. Mater. Chem. C 4, 7601–7606 (2016). doi: 10.1039/C6TC02405J
[141] Mashford, B. S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photon. 7, 407–412 (2013). doi: 10.1038/nphoton.2013.70
[142] Castañeda, J. A. et al. Efficient biexciton interaction in perovskite quantum dots under weak and strong confinement. ACS Nano 10, 8603–8609 (2016). doi: 10.1021/acsnano.6b03908
[143] Yan, F. et al. Highly efficient visible colloidal lead-halide perovskite nanocrystal light-emitting diodes. Nano Lett. 18, 3157–3164 (2018). doi: 10.1021/acs.nanolett.8b00789
[144] Lim, J. et al. Droop-free colloidal quantum dot light-emitting diodes. Nano Lett. 18, 6645–6653 (2018). doi: 10.1021/acs.nanolett.8b03457
[145] Bae, W. K. et al. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun. 4, 2661 (2013). doi: 10.1038/ncomms3661
[146] Zhao, Y. M. et al. High-temperature luminescence quenching of colloidal quantum dots. ACS Nano 6, 9058–9067 (2012). doi: 10.1021/nn303217q
[147] Breen, C. & Liu, W. H. Methods for coating semiconductor nanocrystals. 10096678. (2018).
[148] Shimizu, K. T. et al. Toward commercial realization of quantum dot based white light-emitting diodes for general illumination. Photon. Res. 5, A1–A6 (2017). doi: 10.1364/PRJ.5.0000A1
[149] Bottrill, M. & Green, M. Some aspects of quantum dot toxicity. Chem. Commun. 47, 7039–7050 (2011). doi: 10.1039/c1cc10692a
[150] Kang, H. L. et al. Spatial light patterning of full color quantum dot displays enabled by locally controlled surface tailoring. Adv. Opt. Mater. 6, 1701335 (2018). doi: 10.1002/adom.201701335
[151] Palankar, R. et al. Fabrication of quantum dot microarrays using electron beam lithography for applications in analyte sensing and cellular dynamics. ACS Nano 7, 4617–4628 (2013). doi: 10.1021/nn401424y
[152] Kong, Y. L. et al. 3D printed quantum dot light-emitting diodes. Nano Lett. 14, 7017–7023 (2014). doi: 10.1021/nl5033292
[153] Kim, T. H. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photon. 5, 176–182 (2011). doi: 10.1038/nphoton.2011.12
[154] Salaita, K., Wang, Y. H. & Mirkin, C. A. Applications of dip-pen nanolithography. Nat. Nanotechnol. 2, 145–155 (2007). doi: 10.1038/nnano.2007.39
[155] Manfrinato, V. R. et al. Resolution limits of electron-beam lithography toward the atomic scale. Nano Lett. 13, 1555–1558 (2013). doi: 10.1021/nl304715p
[156] Richner, P. et al. Full-spectrum flexible color printing at the diffraction limit. ACS Photon. 3, 754–757 (2016). doi: 10.1021/acsphotonics.6b00131
[157] Microled-info. UBI sees Micro-LED revenues reaching $6 billion by 2025. https://www.microled-info.com/ubi-sees-micro-led-revenues-reaching-6-billion-2025. (2019).
[158] Burchardt, H. et al. VLC: beyond point-to-point communication. IEEE Commun. Mag. 52, 98–105 (2014). doi: 10.1109/MCOM.2014.6852089
[159] Rajagopal, S., Roberts, R. D. & Lim, S. K. IEEE 802.15.7 visible light communication: modulation schemes and dimming support. IEEE Commun. Mag. 50, 72–82 (2012). doi: 10.1109/MCOM.2012.6163585
[160] Ferreira, R. X. G. et al. High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications. IEEE Photon. Technol. Lett. 28, 2023–2026 (2016). doi: 10.1109/LPT.2016.2581318
[161] Li, X. et al. μLED-based single-wavelength bi-directional POF link with 10 Gb/s aggregate data rate. J. Lightwave Technol. 33, 3571–3576 (2015). doi: 10.1109/JLT.2015.2443984
[162] Chun, H. et al. Visible light communication using a blue GaN μ LED and fluorescent polymer color converter. IEEE Photon. Technol. Lett. 26, 2035–2038 (2014). doi: 10.1109/LPT.2014.2345256
[163] Mei, S. L. et al. High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication. ACS Appl. Mater. Interfaces 10, 5641–5648 (2018). doi: 10.1021/acsami.7b17810
[164] Traquair, H. M. An Introduction to Clinical Perimetry (Henry Kimpton, London, 1938).
[165] Vieri, C. et al. An 18 megapixel 4.3″ 1443 ppi 120 Hz OLED display for wide field of view high acuity head mounted displays. J. Soc. Inf. Disp. 26, 314–324 (2018). doi: 10.1002/jsid.658
[166] Lee, Y. H., Zhan, T. & Wu, S. T. Prospects and challenges in augmented reality displays. Virtual Real. Intell. Hardw. 1, 10–20 (2019). doi: 10.3724/SP.J.2096-5796.2018.0009
[167] Ghosh, A. et al. Ultra-high-brightness 2K x 2K full-color OLED microdisplay using direct patterning of OLED emitters. SID Symp. Dig. Tech. Pap. 48, 226–229 (2017). doi: 10.1002/sdtp.11674