[1] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333-337 (2011). doi: 10.1126/science.1210713
[2] Huang, L. L. et al. Dispersionless phase discontinuities for controlling light propagation. Nano Letters 12, 5750-5755 (2012). doi: 10.1021/nl303031j
[3] Yu, N. F. & Capasso, F. Flat optics with designer metasurfaces. Nature Materials 13, 139-150 (2014). doi: 10.1038/nmat3839
[4] Wen, D. D. et al. Geometric metasurfaces for ultrathin optical devices. Advanced Optical Materials 6, 1800348 (2018). doi: 10.1002/adom.201800348
[5] Zang, X. F. et al. Metasurfaces for manipulating terahertz waves. Light:Advanced Manufacturing 2, 10 (2021).
[6] Monticone, F., Estakhri, N. M. & Alù, A. Full control of nanoscale optical transmission with a composite metascreen. Physical Review Letters 110, 203903 (2013). doi: 10.1103/PhysRevLett.110.203903
[7] Zhang, X. Q. et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Advanced Materials 25, 4567-4572 (2013). doi: 10.1002/adma.201204850
[8] Li, Z. Y. et al. Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting. Nano Letters 15, 1615-1621 (2015). doi: 10.1021/nl5041572
[9] Qin, F. et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. Science Advances 2, e1501168 (2016). doi: 10.1126/sciadv.1501168
[10] Arbabi, A. et al. Dielectric Metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature Nanotechnology 10, 937-943 (2015). doi: 10.1038/nnano.2015.186
[11] Maguid, E. et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 352, 1202-1206 (2015).
[12] Yue, F. Y. et al. Vector vortex beam generation with a single plasmonic metasurface. ACS Photonics 3, 1558-1563 (2016). doi: 10.1021/acsphotonics.6b00392
[13] Yue, F. Y. et al. Multichannel polarization-controllable superpositions of orbital angular momentum states. Advanced Materials 29, 1603838 (2017). doi: 10.1002/adma.201603838
[14] Zhang, Y. C. et al. Generating focused 3D perfect vortex beams by plasmonic metasurfaces. Advanced Optical Materials 6, 1701228 (2018). doi: 10.1002/adom.201701228
[15] Ou, Y. et al. All-dielectric metasurfaces for generation and detection of multi-channel vortex beams. Applied Physics Express 12, 082004 (2019). doi: 10.7567/1882-0786/ab2da9
[16] Yuan, Y. Y. et al. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces. Nature Communications 11, 4186 (2020). doi: 10.1038/s41467-020-17773-6
[17] Bao, Y. J., Ni, J. C. & Qiu, C. W. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams. Advanced Materials 32, 1905659 (2020). doi: 10.1002/adma.201905659
[18] Zhang, S. et al. Broadband detection of multiple spin and orbital angular momenta via dielectric metasurface. Laser & Photonics Reviews 14, 2000062 (2020).
[19] Liu, M. Z. et al. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface. Nature Communications 12, 2230 (2021). doi: 10.1038/s41467-021-22462-z
[20] Zhang, H. et al. All-dielectric metasurface-enabled multiple vortex emissions. Advanced Materials 34, 2109255 (2022). doi: 10.1002/adma.202109255
[21] Ni, X. J. et al. Metasurface holograms for visible light. Nature Communications 4, 2807 (2013). doi: 10.1038/ncomms3807
[22] Huang, L. L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nature Communications 4, 2808 (2013). doi: 10.1038/ncomms3808
[23] Zheng, G. X. et al. Metasurface holograms reaching 80% efficiency. Nature Nanotechnology 10, 308-312 (2015). doi: 10.1038/nnano.2015.2
[24] Wen, D. D. et al. Helicity multiplexed broadband metasurface holograms. Nature Communications 6, 8241 (2015). doi: 10.1038/ncomms9241
[25] Li, X. et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Science Advances 2, e1601102 (2016). doi: 10.1126/sciadv.1601102
[26] Jin, L. et al. Noninterleaved metasurface for (26-1) spin- and wavelength-encoded holograms. Nano Letters 18, 8016-8024 (2018). doi: 10.1021/acs.nanolett.8b04246
[27] Jin, L. et al. Dielectric multi-momentum meta-transformer in the visible. Nature Communications 10, 4789 (2019). doi: 10.1038/s41467-019-12637-0
[28] Song, Q. H. et al. Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces. Nature Communications 11, 2651 (2020). doi: 10.1038/s41467-020-16437-9
[29] Chen, X. Z. et al. Dual-polarity plasmonic metalens for visible light. Nature Communications 3, 1198 (2012). doi: 10.1038/ncomms2207
[30] Arbabi, A. et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nature Communications 6, 7069 (2015). doi: 10.1038/ncomms8069
[31] Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190-1194 (2016). doi: 10.1126/science.aaf6644
[32] Wang, S. M. et al. Broadband achromatic optical metasurface devices. Nature Communications 8, 187 (2017). doi: 10.1038/s41467-017-00166-7
[33] Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nature Nanotechnology 13, 220-226 (2018). doi: 10.1038/s41565-017-0034-6
[34] Lin, R. J. et al. Achromatic metalens array for full-colour light-field imaging. Nature Nanotechnology 14, 227-231 (2019). doi: 10.1038/s41565-018-0347-0
[35] Zang, X. F. et al. A multi-foci metalens with polarization-rotated focal points. Laser & Photonics Reviews 13, 1900182 (2019).
[36] Zang, X. F. et al. Polarization-insensitive metalens with extended focal depth and longitudinal high-tolerance imaging. Advanced Optical Materials 8, 1901342 (2020). doi: 10.1002/adom.201901342
[37] Wang, Y. J. et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nature Communications 12, 5560 (2021). doi: 10.1038/s41467-021-25797-9
[38] Yu, N. F. et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Letters 12, 6328-6333 (2012). doi: 10.1021/nl303445u
[39] Grady, N. K. et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340, 1304-1307 (2013). doi: 10.1126/science.1235399
[40] Wu, P. C. et al. Versatile polarization generation with an aluminum plasmonic metasurface. Nano Letters 17, 445-452 (2017). doi: 10.1021/acs.nanolett.6b04446
[41] Zang, X. F. et al. Polarization encoded color image embedded in a dielectric metasurface. Advanced Materials 30, 1707499 (2018). doi: 10.1002/adma.201707499
[42] Dorrah, A. H. et al. Metasurface optics for on-demand polarization transformations along the optical path. Nature Photonics 15, 287-296 (2021). doi: 10.1038/s41566-020-00750-2
[43] Li, G. X. et al. Continuous control of the nonlinearity phase for harmonic generations. Nature Materials 14, 607-612 (2015). doi: 10.1038/nmat4267
[44] Ye, W. M. et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nature Communications 7, 11930 (2016). doi: 10.1038/ncomms11930
[45] Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533-536 (1986). doi: 10.1038/323533a0
[46] Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward networks are universal approximators. Neural Networks 2, 359-366 (1989). doi: 10.1016/0893-6080(89)90020-8
[47] Shen, Y. C. et al. Deep learning with coherent nanophotonic circuits. Nature Photonics 11, 441-446 (2017). doi: 10.1038/nphoton.2017.93
[48] Zhang, Q. M. et al. Artificial neural networks enabled by nanophotonics. Light:Science & Applications 8, 42 (2019).
[49] Chen, M. K. et al. Artificial intelligence in meta-optics. Chemical Reviews 122, 15356-15413 (2022). doi: 10.1021/acs.chemrev.2c00012
[50] Yao, K. Unni, R. & Zheng, Y. B. Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale. Nanophotonics 8, 339-366 (2019). doi: 10.1515/nanoph-2018-0183
[51] Elsawy, M. M. R. et al. Numerical optimization methods for metasurfaces. Laser & Photonics Reviews 14, 1900445 (2020).
[52] Jiang, J. Q. et al. Free-form diffractive metagrating design based on generative adversarial networks. ACS Nano 13, 8872-8878 (2019). doi: 10.1021/acsnano.9b02371
[53] LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444 (2015). doi: 10.1038/nature14539
[54] Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004-1008 (2018). doi: 10.1126/science.aat8084
[55] Qian, C. et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nature Photonics 14, 383-390 (2020). doi: 10.1038/s41566-020-0604-2
[56] Chen, M. K. et al. A meta-device for intelligent depth perception. Advanced Materials (2022). doi: 10.1002/adma.202107465
[57] Vai, M. M. et al. Reverse modeling of microwave circuits with bidirectional neural network models. IEEE Transactions on Microwave Theory and Techniques 46, 1492-1494 (1998). doi: 10.1109/22.721152
[58] Qu, Y. R. et al. Migrating knowledge between physical scenarios based on artificial neural networks. ACS Photonics 6, 1168-1174 (2019). doi: 10.1021/acsphotonics.8b01526
[59] Ma, W., Cheng, F. & Liu, Y. M. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano 12, 6326-6334 (2018). doi: 10.1021/acsnano.8b03569
[60] Liu, Z. C. et al. Generative model for the inverse design of metasurfaces. Nano Letters 18, 6570-6576 (2018). doi: 10.1021/acs.nanolett.8b03171
[61] Jiang, J. Q. & Fan, J. A. Global optimization of dielectric metasurfaces using a physics-driven neural network. Nano Letters 19, 5366-5372 (2019). doi: 10.1021/acs.nanolett.9b01857
[62] An, S. S. et al. Deep convolutional neural networks to predict mutual coupling effects in metasurfaces. Advanced Optical Materials 10, 2102113 (2022). doi: 10.1002/adom.202102113
[63] Lin, C. H. et al. Automatic inverse design of high-performance beam-steering metasurfaces via genetic-type tree optimization. Nano Letters 21, 4981-4989 (2021). doi: 10.1021/acs.nanolett.1c00720
[64] Luo, Y. et al. Design of task-specific optical systems using broadband diffractive neural networks. Light:Science & Applications 8, 112 (2019).
[65] Tanriover, I., Hadibrata, W., & Aydin, K. Physics-based approach for a neural networks enabled design of all-dielectric metasurfaces. ACS Photonics 7, 1957-1964 (2020). doi: 10.1021/acsphotonics.0c00663
[66] An, S. S. et al. A deep learning approach for objective-driven all-dielectric metasurface design. ACS Photonics 6, 3196-3207 (2019). doi: 10.1021/acsphotonics.9b00966
[67] Wang, F. L. et al. Visible achromatic metalens design based on artificial neural network. Advanced Optical Materials 10, 2101842 (2022). doi: 10.1002/adom.202101842
[68] Ma, W. et al. Pushing the limits of functionality-multiplexing capability in metasurface design based on statistical machine learning. Advanced Materials 34, 2110022 (2022). doi: 10.1002/adma.202110022
[69] Liu, D. J. et al. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics 5, 1365-1369 (2018). doi: 10.1021/acsphotonics.7b01377
[70] Malkiel, I. et al. Plasmonic nanostructure design and characterization via deep learning. Light:Science & Applications 7, 60 (2018).
[71] Gao, L. et al. A bidirectional deep neural network for accurate silicon color design. Advanced Materials 31, 1905467 (2019). doi: 10.1002/adma.201905467
[72] So, S. Mun. J, & Rho. J. Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core-shell nanoparticles. ACS Applied Materials & Interfaces 11, 24264-24268 (2019).
[73] Yeung, C. et al. Multiplexed supercell metasurface design and optimization with tandem residual networks. Nanophotonics 10, 1133-1143 (2021). doi: 10.1515/nanoph-2020-0549
[74] Zang, X. F. et al. Metasurface for multi-channel terahertz beam splitters and polarization rotators. Applied Physics Letters 112, 171111 (2018). doi: 10.1063/1.5028401
[75] Wei, M. G. et al. Broadband non-polarizing terahertz beam splitters with variable split ratio. Applied Physics Letters 111, 071101 (2017). doi: 10.1063/1.4986538
[76] Zhang, H. F. et al. Coherent control of optical spin-to-orbital angular momentum conversion in metasurface. Advanced Materials 29, 1604252 (2017). doi: 10.1002/adma.201604252