[1] |
Szabo, T. L. Diagnostic Ultrasound Imaging: Inside Out. (Elsevier/Academic Press, 2014). |
[2] |
Syversveen, T. et al. Tissue elasticity estimated by acoustic radiation force impulse quantification depends on the applied transducer force: an experimental study in kidney transplant patients. Eur. Radiol. 22, 2130-2137 (2012). doi: 10.1007/s00330-012-2476-4 |
[3] |
Lam, A. C. L. et al. The influence of precompression on elasticity of thyroid nodules estimated by ultrasound shear wave elastography. Eur. Radiol. 26, 2845-2852 (2016). doi: 10.1007/s00330-015-4108-2 |
[4] |
Porra, L. et al. The effect of applied transducer force on acoustic radiation force impulse quantification within the left lobe of the liver. Australas. J. Ultrasound Med. 18, 100-106 (2015). doi: 10.1002/j.2205-0140.2015.tb00208.x |
[5] |
Hopp, T. et al. Breast imaging with 3D ultrasound computer tomography: results of a first in-vivo study in comparison to MRI images. Proceedings of the 12th International Workshop on Digital Mammography. Gifu City: Springer, 2014. https://doi.org/10.1007/978-3-319-07887-8_11 |
[6] |
Duric, N. et al. Detection of breast cancer with ultrasound tomography: first results with the Computed Ultrasound Risk Evaluation (CURE) prototype. Med. Phys. 34, 773-785 (2007). doi: 10.1118/1.2432161 |
[7] |
Hollenhorst, M. et al. Ultrasound computed tomography in breast imaging: first clinical results of a custom-made scanner. Ultraschall der Med. 31, 604-609 (2010). doi: 10.1055/s-0029-1245506 |
[8] |
Waag, R. C. & Fedewa, R. J. A ring transducer system for medical ultrasound research. IEEE Trans. Ultrason., Ferroelectr., Frequency Control 53, 1707-1718 (2006). doi: 10.1109/TUFFC.2006.104 |
[9] |
Zhang, X. et al. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Milan, Italy: IEEE, 2015, 5541-5544. |
[10] |
Zhang, X. et al. In Proceedings of SPIE 9790, Medical Imaging 2016: Ultrasonic Imaging and Tomography. San Diego: SPIE, 2016. |
[11] |
Ranger, B. et al. In Proceedings of SPIE 7629, Medical Imaging 2010: Ultrasonic Imaging, Tomography, and Therapy. San Diego: SPIE, 2010, 762906. |
[12] |
Cox, B. T. et al. Quantitative spectroscopic photoacoustic imaging: a review. J. Biomed. Opt. 17, 061202 (2012). doi: 10.1117/1.JBO.17.6.061202 |
[13] |
Wang, L. V. Photoacoustic Imaging and Spectroscopy. (Boca Raton: CRC Press, 2009). |
[14] |
Bell, A. G. On the production and reproduction of sound by light. Am. J. Sci. 20, 305-324 (1880). http://www.researchgate.net/publication/256393514_On_the_Production_and_Reproduction_of_Sound_by_Light |
[15] |
Xu, M. H. & Wang, L. V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77, 041101 (2006). doi: 10.1063/1.2195024 |
[16] |
Wang, L. V. & Yao, J. J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 13, 627-638 (2016). doi: 10.1038/nmeth.3925 |
[17] |
Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458-1462 (2012). doi: 10.1126/science.1216210 |
[18] |
Taruttis, A. & Ntziachristos, V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photonics 9, 219-227 (2015). doi: 10.1038/nphoton.2015.29 |
[19] |
Haupt, R. et al. Non-contact laser ultrasound concept for biomedical imaging. Proceedings of 2017 IEEE International Ultrasonics Symposium. Washington: IEEE, 2017. https://doi.org/10.1109/ULTSYM.2017.8091941. |
[20] |
Beard, P. Biomedical photoacoustic imaging. Interface Focus 1, 602-631 (2011). doi: 10.1098/rsfs.2011.0028 |
[21] |
Ku, G. & Wang, L. V. Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent. Opt. Lett. 30, 507-509 (2005). doi: 10.1364/OL.30.000507 |
[22] |
Lyamshev, L. M. Radiation Acoustics. (Boca Raton: CRC Press, 2004). |
[23] |
Gusev, V. E. & Karabutov, A. A. Laser Optoacoustics. (New York: American Institute of Physics, 1993). |
[24] |
Jathoul, A. P. et al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter. Nat. Photonics 9, 239-246 (2015). doi: 10.1038/nphoton.2015.22 |
[25] |
Hristova, Y., Kuchment, P. & Nguyen, L. Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media. Inverse Probl. 24, 055006 (2008). doi: 10.1088/0266-5611/24/5/055006 |
[26] |
Johnson, J. L., Shragge, J. & van Wijk, K. Image reconstruction of multi-channel photoacoustic and laser-ultrasound data using reverse time migration. Proceedings of SPIE 9323, Photons Plus Ultrasound: Imaging and Sensing 2015. San Francisco: SPIE, 2015, 932314. |
[27] |
Monchalin, J. P. Optical detection of ultrasound. IEEE Trans. Ultrason., Ferroelectr., Frequency Control 33, 485-499 (1986). doi: 10.1109/T-UFFC.1986.26860 |
[28] |
Zhang, E., Laufer, J. & Beard, P. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues. Appl. Opt. 47, 561-577 (2008). doi: 10.1364/AO.47.000561 |
[29] |
Dong, B. Q. et al. Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection. Optica 2, 169-176 (2015). doi: 10.1364/OPTICA.2.000169 |
[30] |
Park, S. J. et al. Noncontact photoacoustic imaging based on all-fiber heterodyne interferometer. Opt. Lett. 39, 4903-4906 (2014). doi: 10.1364/OL.39.004903 |
[31] |
Rousseau, G., Blouin, A. & Monchalin, J. P. Non-contact photoacoustic tomography and ultrasonography for tissue imaging. Biomed. Opt. Express 3, 16-25 (2012). doi: 10.1364/BOE.3.000016 |
[32] |
Hochreiner, A. et al. Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification. Biomed. Opt. Express 4, 2322-2331 (2013). doi: 10.1364/BOE.4.002322 |
[33] |
Wissmeyer, G. et al. All-optical optoacoustic microscope based on wideband pulse interferometry. Opt. Lett. 41, 1953-1956 (2016). doi: 10.1364/OL.41.001953 |
[34] |
Ashkenazi, S. et al. Optoacoustic imaging using thin polymer etalon. Appl. Phys. Lett. 86, 134102 (2005). doi: 10.1063/1.1896085 |
[35] |
Wissmeyer, G. et al. Looking at sound: optoacoustics with all-optical ultrasound detection. Light.: Sci. Appl. 7, 53 (2018). doi: 10.1038/s41377-018-0036-7 |
[36] |
Rousseau, G. et al. Non-contact biomedical photoacoustic and ultrasound imaging. J. Biomed. Opt. 17, 061217 (2012). doi: 10.1117/1.JBO.17.6.061217 |
[37] |
Lévesque, D. et al. Performance of laser-ultrasonic F-SAFT imaging. Ultrasonics 40, 1057-1063 (2002). doi: 10.1016/S0041-624X(02)00256-1 |
[38] |
Monchalin, J. P. Laser-ultrasonics: from the laboratory to industry. AIP Conf. Proc. 700, 3-31 (2004). doi: 10.1063/1.1711602 |
[39] |
Johnson, J. L., Shragge, J. & van Wijk, K. Nonconfocal all-optical laser-ultrasound and photoacoustic imaging system for angle-dependent deep tissue imaging. J. Biomed. Opt. 22, 041014 (2017). doi: 10.1117/1.JBO.22.4.041014 |
[40] |
Johnson, J. L., van Wijk, K. & Sabick, M. Characterizing phantom arteries with multi-channel laser ultrasonics and photo-acoustics. Ultrasound Med. Biol. 40, 513-520 (2014). doi: 10.1016/j.ultrasmedbio.2013.10.011 |
[41] |
Paltauf, G. et al. Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector. Appl. Opt. 46, 3352-3358 (2007). doi: 10.1364/AO.46.003352 |
[42] |
Johnson, J. L. et al. All-optical extravascular laser-ultrasound and photoacoustic imaging of calcified atherosclerotic plaque in excised carotid artery. Photoacoustics 9, 62-72 (2018). doi: 10.1016/j.pacs.2018.01.002 |
[43] |
Stratoudaki, T., Clark, M. & Wilcox, P. D. Adapting the full matrix capture and the total focusing method to laser ultrasonics for remote non destructive testing. Proceedings of 2017 IEEE International Ultrasonics Symposium. Washington: IEEE, 2017. https://doi.org/10.1109/ULTSYM.2017.8092864. |
[44] |
Eom, J., Park, S. J. & Lee, B. H. Noncontact photoacoustic tomography of in vivo chicken chorioallantoic membrane based on all-fiber heterodyne interferometry. J. Biomed. Opt. 20, 106007 (2015). doi: 10.1117/1.JBO.20.10.106007 |
[45] |
Fincke, J. R. et al. Characterization of laser ultrasound source signals in biological tissues for imaging applications. J. Biomed. Opt. 24, 021206 (2018). http://www.ncbi.nlm.nih.gov/pubmed/30550046 |
[46] |
US-ANSI. ANSIZ136.1-2007 American National Standard for Safe use of lasers(Laser Institute of America, Orlando, 2007). |
[47] |
Brożyna, A. et al. Porcine skin as a model system for studies of adverse effects of narrow-band uvb pulses on human skin. J. Toxicol. Environ. Health, Part A 72, 789-795 (2009). doi: 10.1080/15287390902800363 |
[48] |
Summerfield, A., Meurens, F. & Ricklin, M. E. The immunology of the porcine skin and its value as a model for human skin. Mol. Immunol. 66, 14-21 (2015). doi: 10.1016/j.molimm.2014.10.023 |
[49] |
Kong, R. & Bhargava, R. Characterization of porcine skin as a model for human skin studies using infrared spectroscopic imaging. Analyst 136, 2359-2366 (2011). doi: 10.1039/c1an15111h |
[50] |
Cooksey, C. C., Tsai, B. K. & Allen, D. W. A collection and statistical analysis of skin reflectance signatures for inherent variability over the 250 nm to 2500 nm spectral range. Proceedings of SPIE 9082, Active and Passive Signatures Ⅴ. Baltimore: SPIE, 2014, 908206. |
[51] |
Cooksey, C. C. & Allen, D. W. Reflectance measurements of human skin from the ultraviolet to the shortwave infrared (250 nm to 2500 nm). Proceedings of SPIE 8734, Active and Passive Signatures Ⅳ. Baltimore: SPIE, 2013, 87340N. |
[52] |
Taruttis, A., van Dam, G. M. & Ntziachristos, V. Mesoscopic and macroscopic optoacoustic imaging of cancer. Cancer Res. 75, 1548-1559 (2015). doi: 10.1158/0008-5472.CAN-14-2522 |
[53] |
Sun, J. et al. Large-scale nanophotonic phased array. Nature 493, 195-199 (2013). doi: 10.1038/nature11727 |
[54] |
Cole, D. B. et al. Integrated heterodyne interferometer with on-chip modulators and detectors. Opt. Lett. 40, 3097-3100 (2015). doi: 10.1364/OL.40.003097 |
[55] |
Bradley, J. D. B. et al. Monolithic erbium- and ytterbium-doped microring lasers on silicon chips. Opt. Express 22, 12226-12237 (2014). doi: 10.1364/OE.22.012226 |
[56] |
DeRose, C. T. et al. Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas. Opt. Express 21, 5198-5208 (2013). doi: 10.1364/OE.21.005198 |
[57] |
Poulton, C. V. et al. Coherent solid-state LIDAR with silicon photonic optical phased arrays. Opt. Lett. 42, 4091-4094 (2017). doi: 10.1364/OL.42.004091 |
[58] |
Sun, J. Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133-136 (2012). doi: 10.1038/nature11409 |