[1] |
Kojima, A. et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). doi: 10.1021/ja809598r |
[2] |
National Renewable Energy Laboratory (NREL). Best research-cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html. (2021) |
[3] |
Miyata, A. et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nat. Phys. 11, 582–587 (2015). doi: 10.1038/nphys3357 |
[4] |
Xing, G. C. et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013). doi: 10.1126/science.1243167 |
[5] |
Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013). doi: 10.1126/science.1243982 |
[6] |
Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015). doi: 10.1126/science.aaa2725 |
[7] |
Tai, Q. D. et al. Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nat. Commun. 7, 11105 (2016). doi: 10.1038/ncomms11105 |
[8] |
Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015). doi: 10.1038/nature14133 |
[9] |
Yang, W. S. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017). doi: 10.1126/science.aan2301 |
[10] |
Said, A. A., Xie, J. & Zhang, Q. C. Recent progress in organic electron transport materials in inverted perovskite solar cells. Small 15, 1900854 (2019). doi: 10.1002/smll.201900854 |
[11] |
Gu, P. Y. et al. An azaacene derivative as promising electron-transport layer for inverted perovskite solar cells. Chem. Asian J. 11, 2135–2138 (2016). doi: 10.1002/asia.201600856 |
[12] |
Seok, S. I., Grätzel, M. & Park, N. G. Methodologies toward highly efficient perovskite solar cells. Small 14, 1704177 (2018). doi: 10.1002/smll.201704177 |
[13] |
Zheng, X. P. et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017). doi: 10.1038/nenergy.2017.102 |
[14] |
Shao, Y. C. et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014). doi: 10.1038/ncomms6784 |
[15] |
Xu, J. X. et al. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 6, 7081 (2015). doi: 10.1038/ncomms8081 |
[16] |
Bai, Y. et al. Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene. Nat. Commun. 7, 12806 (2016). doi: 10.1038/ncomms12806 |
[17] |
Son, D. Y. et al. Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nat. Energy 1, 16081 (2016). doi: 10.1038/nenergy.2016.81 |
[18] |
Liu, Z. K., Lau, S. P. & Yan, F. Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing. Chem. Soc. Rev. 44, 5638–5679 (2015). doi: 10.1039/C4CS00455H |
[19] |
Tang, G. Q. et al. Solution-phase epitaxial growth of perovskite films on 2D material flakes for high-performance solar cells. Adv. Mater. 31, 1807689 (2019). doi: 10.1002/adma.201807689 |
[20] |
You, P., Tang, G. Q. & Yan, F. Two-dimensional materials in perovskite solar cells. Mater. Today Energy 11, 128–158 (2019). doi: 10.1016/j.mtener.2018.11.006 |
[21] |
Wang, B. et al. The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells. Chem. Soc. Rev. 48, 4854–4891 (2019). doi: 10.1039/C9CS00254E |
[22] |
Agresti, A. et al. Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. Nat. Mater. 18, 1228–1234 (2019). doi: 10.1038/s41563-019-0478-1 |
[23] |
Zhang, M. et al. Synergistic cascade carrier extraction via dual interfacial positioning of ambipolar black phosphorene for high-efficiency perovskite solar cells. Adv. Mater. 32, 2000999 (2020). doi: 10.1002/adma.202000999 |
[24] |
Wang, Y. et al. Photostability of MAPbI3 perovskite solar cells by incorporating black phosphorus. Sol. RRL 3, 1900197 (2019). doi: 10.1002/solr.201900197 |
[25] |
Chen, W. et al. Black phosphorus quantum dots for hole extraction of typical planar hybrid perovskite solar cells. J. Phys. Chem. Lett. 8, 591–598 (2017). doi: 10.1021/acs.jpclett.6b02843 |
[26] |
Cao, J. P. et al. Enhanced performance of planar perovskite solar cells induced by van der waals epitaxial growth of mixed perovskite films on WS2 flakes. Adv. Funct. Mater. 30, 2002358 (2020). doi: 10.1002/adfm.202002358 |
[27] |
Yan, F., Migliorato, P. & Ishihara, R. Simulation of twin boundary effect on characteristics of single grain-silicon thin film transistors. Appl. Phys. Lett. 91, 073509 (2007). doi: 10.1063/1.2769951 |
[28] |
Liu, H. et al. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 2732–2743 (2015). doi: 10.1039/C4CS00257A |
[29] |
Long, G. et al. Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Lett. 16, 7768–7773 (2016). doi: 10.1021/acs.nanolett.6b03951 |
[30] |
Li, L. K. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). doi: 10.1038/nnano.2014.35 |
[31] |
Hao, C. X. et al. Flexible all-solid-state supercapacitors based on liquid-exfoliated black-phosphorus nanoflakes. Adv. Mater. 28, 3194–3201 (2016). doi: 10.1002/adma.201505730 |
[32] |
Chen, L. et al. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Adv. Mater. 28, 510–517 (2016). doi: 10.1002/adma.201503678 |
[33] |
Youngblood, N. et al. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 9, 247–252 (2015). doi: 10.1038/nphoton.2015.23 |
[34] |
Huang, M. Q. et al. Broadband black-phosphorus photodetectors with high responsivity. Adv. Mater. 28, 3481–3485 (2016). doi: 10.1002/adma.201506352 |
[35] |
Lin, S. H. et al. Solution-processable ultrathin black phosphorus as an effective electron transport layer in organic photovoltaics. Adv. Funct. Mater. 26, 864–871 (2016). doi: 10.1002/adfm.201503273 |
[36] |
Jeon, N. J. et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014). doi: 10.1038/nmat4014 |
[37] |
Bi, E. B. et al. Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells. Nat. Commun. 8, 15330 (2017). doi: 10.1038/ncomms15330 |
[38] |
You, P. et al. Efficient semitransparent perovskite solar cells with graphene electrodes. Adv. Mater. 27, 3632–3638 (2015). doi: 10.1002/adma.201501145 |
[39] |
Lin, P., Yan, F. & Chan, H. L. W. Improvement of the tunable wettability property of poly(3-alkylthiophene) films. Langmuir 25, 7465–7470 (2009). doi: 10.1021/la900387m |
[40] |
Stone, H. A., Aziz, M. J. & Margetis, D. Grooving of a grain boundary by evaporation-condensation below the roughening transition. J. Appl. Phys. 97, 113535 (2005). doi: 10.1063/1.1922583 |
[41] |
Yun, J. S. et al. Benefit of grain boundaries in organic-inorganic halide planar perovskite solar cells. J. Phys. Chem. Lett. 6, 875–880 (2015). doi: 10.1021/acs.jpclett.5b00182 |
[42] |
Tang, G. Q. et al. Performance enhancement of perovskite solar cells induced by lead acetate as an additive. Sol. RRL 2, 1800066 (2018). doi: 10.1002/solr.201800066 |
[43] |
Kim, H. S. et al. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett. 13, 2412–2417 (2013). doi: 10.1021/nl400286w |
[44] |
Gonzalez-Pedro, V. et al. General working principles of CH3NH3PbX3 Perovskite solar cells. Nano Lett. 14, 888–893 (2014). doi: 10.1021/nl404252e |
[45] |
Liu, J. et al. A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy Environ. Sci. 7, 2963–2967 (2014). doi: 10.1039/C4EE01589D |
[46] |
Wang, Q. et al. Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energy Environ. Sci. 10, 516–522 (2017). doi: 10.1039/C6EE02941H |
[47] |
Wang, F. et al. Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells. Adv. Mater. 28, 9986–9992 (2016). doi: 10.1002/adma.201603062 |
[48] |
Ahn, N. et al. Trapped charge-driven degradation of perovskite solar cells. Nat. Commun. 7, 13422 (2016). doi: 10.1038/ncomms13422 |
[49] |
Han, Q. F. et al. Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv. Mater. 28, 2253–2258 (2016). doi: 10.1002/adma.201505002 |
[50] |
Sherkar, T. S. et al. Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions. ACS Energy Lett. 2, 1214–1222 (2017). doi: 10.1021/acsenergylett.7b00236 |
[51] |
Nicolosi, V. et al. Liquid exfoliation of layered materials. Science 340, 1226419 (2013). doi: 10.1126/science.1226419 |
[52] |
Loh, K. P. et al. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2, 1015–1024 (2010). doi: 10.1038/nchem.907 |
[53] |
Liu, S. H. et al. Black phosphorus quantum dots used for boosting light harvesting in organic photovoltaics. Angew. Chem. Int. Ed. 56, 13717–13721 (2017). doi: 10.1002/anie.201707510 |
[54] |
Wang, J. L. et al. High mobility MoS2 transistor with low schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv. Mater. 28, 8302–8308 (2016). doi: 10.1002/adma.201602757 |
[55] |
Kadantsev, E. S. & Hawrylak, P. Electronic structure of a single MoS2 monolayer. Solid State Commun. 152, 909–913 (2012). doi: 10.1016/j.ssc.2012.02.005 |
[56] |
Santos, E. J. G. & Kaxiras, E. Electrically driven tuning of the dielectric constant in MoS2 layers. Acs Nano 7, 10741–10746 (2013). doi: 10.1021/nn403738b |
[57] |
Chang, H. X. et al. Thin film field-effect phototransistors from bandgap-tunable, solution-processed, few-layer reduced graphene oxide films. Adv. Mater. 22, 4872–4876 (2010). doi: 10.1002/adma.201002229 |
[58] |
You, P. et al. Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells. Energy Environ. Sci. 13, 1187–1196 (2020). doi: 10.1039/C9EE02324K |
[59] |
Yin, W. J., Shi, T. T. & Yan, Y. F. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014). doi: 10.1063/1.4864778 |
[60] |
Guo, Y. G., Wang, Q. & Saidi, W. A. Structural stabilities and electronic properties of high-angle grain boundaries in perovskite cesium lead halides. J. Phys. Chem. C. 121, 1715–1722 (2017). doi: 10.1021/acs.jpcc.6b11434 |
[61] |
Walsh, A. et al. Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem. Int. Ed. 54, 1791–1794 (2015). doi: 10.1002/anie.201409740 |
[62] |
Zhang, Y. et al. Achieving reproducible and high-efficiency (> 21%) perovskite solar cells with a presynthesized FAPbI3 powder. ACS Energy Lett. 5, 360–366 (2020). doi: 10.1021/acsenergylett.9b02348 |
[63] |
Saidaminov, M. I. et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 7586 (2015). doi: 10.1038/ncomms8586 |