[1] Gabor, D. A new microscopic principle. Nature 161, 777–778 (1948). doi: 10.1038/161777a0
[2] Lohmann, A. W. & Paris, D. P. Binary Fraunhofer holograms, generated by computer. Appl. Opt. 6, 1739–1748 (1967). doi: 10.1364/AO.6.001739
[3] Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518–522 (2016). doi: 10.1038/nature19755
[4] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713
[5] Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013). doi: 10.1126/science.1232009
[6] Meinzer, N., Barnes, W. L. & Hooper, I. R. Plasmonic meta-atoms and metasurfaces. Nat. Photonics 8, 889–898 (2014). doi: 10.1038/nphoton.2014.247
[7] Lin, D. M., Fan, P. Y., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014). doi: 10.1126/science.1253213
[8] Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 10, 60–65 (2016). doi: 10.1038/nphoton.2015.247
[9] Chen, W. T. et al. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces. Light Sci. Appl. 6, e16259 (2017). doi: 10.1038/lsa.2016.259
[10] Wang, Q. et al. Broadband metasurface holograms: toward complete phase and amplitude engineering. Sci. Rep. 6, 32867 (2016). doi: 10.1038/srep32867
[11] Ni, X. J., Kildishev, A. V. & Shalaev, V. M. Metasurface holograms for visible light. Nat. Commun. 4, 2807 (2013). doi: 10.1038/ncomms3807
[12] Wei, Q. S., Huang, L. L., Li, X. W., Liu, J. & Wang, Y. T. Broadband multiplane holography based on plasmonic metasurface. Adv. Opt. Mater. 5, 1700434 (2017). doi: 10.1002/adom.201700434
[13] Huang, K. et al. Silicon multi-meta-holograms for the broadband visible light. Laser Photonics Rev. 10, 500–509 (2016). doi: 10.1002/lpor.201500314
[14] Huang, L. L. et al. Broadband hybrid holographic multiplexing with geometric metasurfaces. Adv. Mater. 27, 6444–6449 (2015). doi: 10.1002/adma.201502541
[15] Huang, L. L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013). doi: 10.1038/ncomms3808
[16] Zheng, G. X. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015). doi: 10.1038/nnano.2015.2
[17] Yifat, Y. et al. Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays. Nano Lett. 14, 2485–2490 (2014). doi: 10.1021/nl5001696
[18] Devlin, R. C., Khorasaninejad, M., Chen, W. T., Oh, J. & Capasso, F. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc. Natl Acad. Sci. USA 113, 10473–10478 (2016). doi: 10.1073/pnas.1611740113
[19] Malek, S. C., Ee, H. S. & Agarwal, R. Strain multiplexed metasurface holograms on a stretchable substrate. Nano Lett. 17, 3641–3645 (2017). doi: 10.1021/acs.nanolett.7b00807
[20] Xie, Z. W. et al. Meta-holograms with full parameter control of wavefront over a 1000 nm bandwidth. ACS Photonics 4, 2158–2164 (2017). doi: 10.1021/acsphotonics.7b00710
[21] Mueller, J. P. B., Rubin, N. A., Devlin, R. C., Groever, B. & Capasso, F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017). doi: 10.1103/PhysRevLett.118.113901
[22] Wen, D. D. et al. Helicity multiplexed broadband metasurface holograms. Nat. Commun. 6, 8241 (2015). doi: 10.1038/ncomms9241
[23] Chen, W. T. et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett. 14, 225–230 (2014). doi: 10.1021/nl403811d
[24] Wang, Q. et al. Polarization and frequency multiplexed terahertz meta-holography. Adv. Opt. Mater. 5, 1700277 (2017). doi: 10.1002/adom.201700277
[25] Li, X. et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv. 2, e1601102 (2016). doi: 10.1126/sciadv.1601102
[26] Wan, W. W., Gao, J. & Yang, X. D. Full-color plasmonic metasurface holograms. ACS Nano 10, 10671–10680 (2016). doi: 10.1021/acsnano.6b05453
[27] Huang, Y. W. et al. Aluminum plasmonic multicolor meta-hologram. Nano Lett. 15, 3122–3127 (2015). doi: 10.1021/acs.nanolett.5b00184
[28] Walther, B. et al. Spatial and spectral light shaping with metamaterials. Adv. Mater. 24, 6300–6304 (2012). doi: 10.1002/adma.201202540
[29] Ye, W. M. et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat. Commun. 7, 11930 (2016). doi: 10.1038/ncomms11930
[30] Almeida, E., Bitton, O. & Prior, Y. Nonlinear metamaterials for holography. Nat. Commun. 7, 12533 (2016). doi: 10.1038/ncomms12533
[31] Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972).
[32] Fienup, J. R. Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett. 3, 27–29 (1978). doi: 10.1364/OL.3.000027
[33] Fienup, J. R. Iterative method applied to image reconstruction and to computer-generated holograms. Opt. Eng. 19, 297–305 (1980). doi: 10.1117/12.7972513
[34] Yang, G. Z. & Gu, B. Y. On the amplitude-phase retrieval problem in the optical systems. Acta Phys. Sin. 30, 410–413 (1981).
[35] Plum, E. Chirality and Metamaterials. (University of Southampton, Southampton, PhD Thesis, 2010).
[36] Plum, E., Fedotov, V. A. & Zheludev, N. I. Planar metamaterial with transmission and reflection that depend on the direction of incidence. Appl. Phys. Lett. 94, 131901 (2009). doi: 10.1063/1.3109780
[37] Plum, E. & Zheludev, N. I. Chiral mirrors. Appl. Phys. Lett. 106, 221901 (2015).
[38] Liu, Y. H., Gu, S., Luo, C. R. & Zhao, X. P. Ultra-thin broadband metamaterial absorber. Appl. Phys. A 108, 19–24 (2012). doi: 10.1007/s00339-012-6936-0
[39] Cencillo-Abad, P., Ou, J. Y., Plum, E. & Zheludev, N. I. Electro-mechanical light modulator based on controlling the interaction of light with a metasurface. Sci. Rep. 7, 5405 (2017). doi: 10.1038/s41598-017-05906-9
[40] Gholipour, B., Zhang, J. F., MacDonald, K. F., Hewak, D. W. & Zheludev, N. I. An all-optical, non-volatile, bidirectional, phase-change meta-switch. Adv. Mater. 25, 3050–3054 (2013). doi: 10.1002/adma.201300588
[41] Zheludev, N. I. & Plum, E. Reconfigurable nanomechanical photonic metamaterials. Nat. Nanotechnol. 11, 16–22 (2016). doi: 10.1038/nnano.2015.302
[42] Cencillo-Abad, P., Ou, J. Y., Plum, E., Valente, J. & Zheludev, N. I. Random access actuation of nanowire grid metamaterial. Nanotechnology 27, 485206 (2016). doi: 10.1088/0957-4484/27/48/485206