[1] Currey, J. D. Bones: Structure and Mechanics (Princeton University Press, Princeton, Oxford, 2002).
[2] D'Oronzo, S., Stucci, S., Tucci, M. & Silvestris, F. Cancer treatment-induced bone loss (CTIBL): pathogenesis and clinical implications. Cancer Treat. Rev. 41, 798–808 (2015). doi: 10.1016/j.ctrv.2015.09.003
[3] Wang, J. L. et al. Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds. Adv. Mater. 26, 4961–4966 (2014). doi: 10.1002/adma.201400154
[4] Chu, K. F. & Dupuy, D. E. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat. Rev. Cancer 14, 199–208 (2014). doi: 10.1038/nrc3672
[5] Shen, J., Zhao, L. & Han, G. Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy. Adv. Drug Deliv. Rev. 65, 744–755 (2013). doi: 10.1016/j.addr.2012.05.007
[6] Mirza, A. N. et al. Radiofrequency ablation of solid tumors. Cancer J. 7, 95–102 (2001).
[7] Kennedy, J. E. High-intensity focused ultrasound in the treatment of solid tumours. Nat. Rev. Cancer 5, 321–327 (2005). doi: 10.1038/nrc1591
[8] Yan, J. H., Ma, C. R., Liu, Pu, Wang, C. X. & Yang, G. W. Generating scattering dark states through the Fano interference between excitons and an individual silicon nanogroove. Light Sci. Appl. 6, e16197 (2017). doi: 10.1038/lsa.2016.197
[9] Ikenaga, M. et al. Localized hyperthermic treatment of experimental bone tumors with ferromagnetic ceramics. J. Orthop. Res 11, 849–855 (1993). doi: 10.1002/jor.1100110611
[10] Hench, L. L. & Kokubo, T. in Handbook of Biomaterial Properties (eds Black, J. & Hastings, G.) (Springer, Bostan, MA, 1998).
[11] Jiang, Y. M., Ou, J., Zhang, Z. H. & Qin, Q. H. Preparation of magnetic and bioactive calcium zinc iron silicon oxide composite for hyperthermia treatment of bone cancer and repair of bone defects. J. Mater. Sci. Mater. Med. 22, 721–729 (2011). doi: 10.1007/s10856-010-4225-z
[12] Bretcanu, O. et al. The influence of crystallised Fe3O4 on the magnetic properties of coprecipitation-derived ferrimagnetic glass-ceramics. Acta Biomater. 1, 421–429 (2005). doi: 10.1016/j.actbio.2005.04.007
[13] Xiao, J. W. et al. Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells. Nanoscale 6, 4345–4351 (2014). doi: 10.1039/C3NR06843A
[14] Liu, B. et al. Magnetically targeted delivery of DOX loaded Cu9S5@mSiO2@Fe3O4-PEG nanocomposites for combined MR imaging and chemo/photothermal synergistic therapy. Nanoscale 8, 12560–12569 (2016). doi: 10.1039/C5NR06322A
[15] Cheng, L., Wang, C., Feng, L. Z., Yang, K. & Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 114, 10869–10939 (2014). doi: 10.1021/cr400532z
[16] Son, J. et al. Ultrafast photonic PCR. Light Sci. Appl. 4, e280 (2015). doi: 10.1038/lsa.2015.53
[17] Ming, T. et al. Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods. NanoLetters 9, 3896–3903 (2009). doi: 10.1021/nl902095q
[18] Blum, O. & Shaked, N. T. Prediction of photothermal phase signatures from arbitrary plasmonic nanoparticles and experimental verification. Light Sci. Appl. 4, e322 (2015). doi: 10.1038/lsa.2015.95
[19] Bakewell, C., White, A. J. P., Long, N. J. & Williams, C. K. Metal-size influence in iso-selective lactide polymerization. Angew Chem. Int Ed. Engl. 53, 9226–9230 (2014). doi: 10.1002/anie.201403643
[20] Yang, D. et al. Assembly of Au plasmonic photothermal agent and iron oxide nanoparticles on ultrathin black phosphorus for targeted photothermal and photodynamic cancer therapy. Adv. Funct. Mater. 27, 1700371 (2017). doi: 10.1002/adfm.201700371
[21] Qiu, P. H. et al. Tuning photothermal properties of gold nanodendrites for in vivo cancer therapy within a wide near infrared range by simply controlling their degree of branching. Biomaterials 104, 138–144 (2016). doi: 10.1016/j.biomaterials.2016.06.033
[22] Yang, K. et al. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. NanoLetters 10, 3318–3323 (2010). doi: 10.1021/nl100996u
[23] Li, D. et al. Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion. Light Sci. Appl. 5, e16120 (2016). doi: 10.1038/lsa.2016.120
[24] Qu, D. et al. Preparation of graphene nanosheets/copper composite by spark plasma sintering. Adv. Mater. Res. 833, 276–279 (2013). doi: 10.4028/www.scientific.net/AMR.833.276
[25] Robinson, J. T. et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 133, 6825–6831 (2011). doi: 10.1021/ja2010175
[26] Chan, C. F. et al. pH-dependent cancer-directed photodynamic therapy by a water-soluble graphitic-phase carbon nitride–porphyrin nanoprobe. ChemPlusChem 81, 535–540 (2016). doi: 10.1002/cplu.201600085
[27] Hessel, C. M. et al. Copper selenide nanocrystals for photothermal therapy. NanoLetters 11, 2560–2566 (2011). doi: 10.1021/nl201400z
[28] Tian, Q. W. et al. Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 5, 9761–9771 (2011). doi: 10.1021/nn203293t
[29] Feng, W. et al. In vitro and in vivo toxicity studies of copper sulfide nanoplates for potential photothermal applications. Nanomed. Nanotechnol. Biol. Med. 11, 901–912 (2015). doi: 10.1016/j.nano.2014.12.015
[30] Xie, R. J. & Hintzen, H. T. Optical properties of (Oxy) nitride materials: a review. J. Am. Ceram. Soc. 96, 665–687 (2013). doi: 10.1111/jace.12197
[31] Deng, X. R. et al. Rational design of a comprehensive cancer therapy platform using temperature-sensitive polymer grafted hollow gold nanospheres: simultaneous chemo/photothermal/photodynamic therapy triggered by a 650 nm laser with enhanced anti-tumor efficacy. Nanoscale 8, 6837–6850 (2016). doi: 10.1039/C5NR08253F
[32] Hong, R. et al. Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J. Am. Chem. Soc. 128, 1078–1079 (2006). doi: 10.1021/ja056726i
[33] Shen, J. et al. Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm. Adv. Opt. Mater. 1, 644–650 (2013). doi: 10.1002/adom.201300160
[34] Deng, K. R. et al. 808 nm light responsive nanotheranostic agents based on near-infrared dye functionalized manganese ferrite for magnetic-targeted and imaging-guided photodynamic/photothermal therapy. J. Mater. Chem. B 5, 1803–1814 (2017). doi: 10.1039/C6TB03233H
[35] Wu, C. T., Chang, J., Wang, J. Y., Ni, S. Y. & Zhai, W. Y. Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic. Biomaterials 26, 2925–2931 (2005). doi: 10.1016/j.biomaterials.2004.09.019
[36] Lee, J. W., Yamaguchi, A. & Iimura, T. Functional heterogeneity of osteocytes in FGF23 production: the possible involvement of DMP1 as a direct negative regulator. Bone Rep. 3, 543 (2014).
[37] Qin, G. et al. Melittin inhibits tumor angiogenesis modulated by endothelial progenitor cells associated with the SDF-1α/CXCR4 signaling pathway in a UMR-106 osteosarcoma xenograft mouse model. Mol. Med Rep. 14, 57–68 (2016). doi: 10.3892/mmr.2016.5215
[38] Bartkova, J. et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633–637 (2006). doi: 10.1038/nature05268
[39] Zhao, Z. X. et al. Highly selective mitochondria-targeting amphiphilic silicon(Ⅳ) phthalocyanines with axially ligated rhodamine B for photodynamic therapy. Inorg. Chem. 51, 812–821 (2011). doi: 10.1021/ic201178e
[40] Jin, M. Z., Lu, F. & Belkin, M. A. High-sensitivity infrared vibrational nanospectroscopy in water. Light Sci. Appl. 6, e17096 (2017). doi: 10.1038/lsa.2017.96
[41] Zheng, J. Y. et al. Broadband NIR luminescence from a new bismuth doped Ba2B5O9Cl crystal: evidence for the Bi0 model. Opt. Express 20, 22569–22578 (2012). doi: 10.1364/OE.20.022569
[42] Peng, M. Y., Zollfrank, C. & Wondraczek, L. Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature. J. Phys. Condens Matter 21, 285106 (2009). doi: 10.1088/0953-8984/21/28/285106
[43] Hench, L. L. in Handbook of Bioceramics and Biocomposites (ed I. Antoniac, I.) 23–33 (Springer, Cham, 2016).
[44] Zhao, Y. Q., Peng, M. Y., Mermet, A., Zheng, J. Y. & Qiu, J. R. Precise frequency shift of NIR luminescence from bismuth-doped Ta2O5–GeO2 glass via composition modulation. J. Mater. Chem. C. 2, 7830–7835 (2014). doi: 10.1039/C4TC01159G
[45] Wang, L. P., Tan, L. L., Yue, Y. Z., Peng, M. Y. & Qiu, J. R. Efficient enhancement of bismuth NIR luminescence by aluminum and its mechanism in bismuth-doped germanate laser glass. J. Am. Ceram. Soc. 99, 2071–2076 (2016). doi: 10.1111/jace.14197
[46] Stebbins, J. F. & Xu, Z. NMR evidence for excess non-bridging oxygen in an aluminosilicate glass. Nature 390, 60–62 (1997). doi: 10.1038/36312
[47] Neuville, D. R., Cormier, L., Montouillout, V. & Massiot, D. Local Al site distribution in aluminosilicate glasses by 27Al MQMAS NMR. J. Non-Cryst. Solids 353, 180–184 (2007). doi: 10.1016/j.jnoncrysol.2006.09.035
[48] Kjeldsen, J. et al. Mixed alkaline earth effect in sodium aluminosilicate glasses. J. Non-Cryst. Solids 369, 61–68 (2013). doi: 10.1016/j.jnoncrysol.2013.03.015
[49] Nielsen, K. H., Smedskjaer, M. M., Peng, M. Y., Yue, Y. Z. & Wondraczek, L. Surface-luminescence from thermally reduced bismuth-doped sodium aluminosilicate glasses. J. Non-Cryst. Solids 358, 3193–3199 (2012). doi: 10.1016/j.jnoncrysol.2012.09.021
[50] Li, M. et al. Stimulatory effects of the degradation products from Mg-Ca-Sr alloy on the osteogenesis through regulating ERK signaling pathway. Sci. Rep. 6, 32323 (2016). doi: 10.1038/srep32323