[1] Ferguson, B. & Zhang, X. C. Materials for terahertz science and technology. Nat. Mater. 1, 26–33 (2002). doi: 10.1038/nmat708
[2] Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 1, 97–105 (2007). doi: 10.1038/nphoton.2007.3
[3] Karpowicz, N. et al. Compact continuous-wave subterahertz system for inspection applications. Appl. Phys. Lett. 86, 054105 (2005). doi: 10.1063/1.1856701
[4] Yang, X. et al. Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol. 34, 810–824 (2016). doi: 10.1016/j.tibtech.2016.04.008
[5] Zou, Y. et al. Label-free monitoring of cell death induced by oxidative stress in living human cells using terahertz ATR spectroscopy. Biomed. Opt. Express 9, 14–24 (2018). doi: 10.1364/BOE.9.000014
[6] Zou, Y. et al. Terahertz spectroscopic diagnosis of myelin deficit brain in mice and rhesus monkey with chemometric techniques. Sci. Rep. 7, 5176 (2017). doi: 10.1038/s41598-017-05554-z
[7] Meng, K. et al. Terahertz pulsed spectroscopy of paraffin-embedded brain glioma. J. Biomed. Opt. 19, 077001 (2014). doi: 10.1117/1.JBO.19.7.077001
[8] Huber, A. J. et al. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Lett. 8, 3766–3770 (2008). doi: 10.1021/nl802086x
[9] Cocker, T. L. et al. An ultrafast terahertz scanning tunnelling microscope. Nat. Photonics 7, 620–625 (2013). doi: 10.1038/nphoton.2013.151
[10] Kawano, Y. & Ishibashi, K. An on-chip near-field terahertz probe and detector. Nat. Photonics 2, 618–621 (2008). doi: 10.1038/nphoton.2008.157
[11] Stantchev, R. I. et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector. Sci. Adv. 2, e1600190 (2016). doi: 10.1126/sciadv.1600190
[12] Stantchev, R. I. et al. Compressed sensing with near-field THz radiation. Optica 4, 989–992 (2017). doi: 10.1364/OPTICA.4.000989
[13] Chen, S. C. et al. Terahertz wave near-field compressive imaging with a spatial resolution of over λ/100. Opt. Lett. 44, 21–24 (2019). doi: 10.1364/OL.44.000021
[14] Zhao, J. P. et al. Spatial sampling of terahertz fields with sub-wavelength accuracy via probe-beam encoding. Light. Sci. Appl. 8, 55 (2019). doi: 10.1038/s41377-019-0166-6
[15] Watts, C. M. et al. Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics 8, 605–609 (2014). doi: 10.1038/nphoton.2014.139
[16] Olivieri, L. et al. Time-resolved nonlinear ghost imaging. ACS Photonics 5, 3379–3388 (2018). doi: 10.1021/acsphotonics.8b00653
[17] Olivieri, L. et al. Hyperspectral terahertz microscopy via nonlinear ghost imaging. Optica 7, 186–191 (2020). doi: 10.1364/OPTICA.381035
[18] Erkmen, B. I. & Shapiro, J. H. Ghost imaging: from quantum to classical to computational. Adv. Opt. Photonics 2, 405–450 (2010). doi: 10.1364/AOP.2.000405
[19] Edgar, M. P., Gibson, G. M. & Padgett, M. J. Principles and prospects for single-pixel imaging. Nat. Photonics 13, 13–20 (2019). doi: 10.1038/s41566-018-0300-7
[20] Bethe, H. A. Theory of diffraction by small holes. Phys. Rev. 66, 163–182 (1944). doi: 10.1103/PhysRev.66.163
[21] Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006). doi: 10.1038/nature04937
[22] Sinova, J. et al. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).
[23] Kampfrath, T. et al. Terahertz spin current pulses controlled by magnetic heterostructures. Nat. Nanotechnol. 8, 256–260 (2013). doi: 10.1038/nnano.2013.43
[24] Seifert, T. et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photonics 10, 483–488 (2016). doi: 10.1038/nphoton.2016.91
[25] Feng, Z. et al. Highly efficient spintronic terahertz emitter enabled by metal-dielectric photonic crystal. Adv. Optical Mater. 6, 1800965 (2018). doi: 10.1002/adom.201800965
[26] Torosyan, G. et al. Optimized spintronic terahertz emitters based on epitaxial grown Fe/Pt layer structures. Sci. Rep. 8, 1311 (2018). doi: 10.1038/s41598-018-19432-9
[27] Harwit, M. & Sloane, N. J. A. Hadamard Transform Optics. (Academic Press, New York, 1979).
[28] Murate, K. et al. Adaptive spatiotemporal optical pulse front tilt using a digital micromirror device and its terahertz application. Opt. Lett. 43, 2090–2093 (2018). doi: 10.1364/OL.43.002090
[29] Eskicioglu, A. M. & Fisher, P. S. Image quality measures and their performance. IEEE Trans. Commun. 43, 2959–2965 (1995). doi: 10.1109/26.477498
[30] Zhong, H. et al. Nondestructive defect identification with terahertz time-of-flight tomography. IEEE Sens. J. 5, 203–208 (2005). doi: 10.1109/JSEN.2004.841341
[31] Wu, Y. et al. High-performance THz emitters based on ferromagnetic/nonmagnetic heterostructures. Adv. Mater. 29, 1603031 (2017). doi: 10.1002/adma.201603031
[32] Phillips, D. B. et al. Adaptive foveated single-pixel imaging with dynamic supersampling. Sci. Adv. 3, e1601782 (2017). doi: 10.1126/sciadv.1601782
[33] Chun, I. Y. & Adcock, B. Compressed sensing and parallel acquisition. IEEE Trans. Inf. Theory 63, 4860–4882 (2017). doi: 10.1109/TIT.2017.2700440