[1] Bayer, M. et al. Coupling and entangling of quantum states in quantum dot molecules. Science 291, 451–453 (2001). doi: 10.1126/science.291.5503.451
[2] Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005). doi: 10.1126/science.1116955
[3] Bester, G., Shumway, J. & Zunger, A. Theory of excitonic spectra and entanglement engineering in dot molecules. Phys. Rev. Lett. 93, 047401 (2004). doi: 10.1103/PhysRevLett.93.047401
[4] Robledo, L. et al. Conditional dynamics of interacting quantum dots. Science 320, 772–775 (2008). doi: 10.1126/science.1155374
[5] Sheng, W. D. & Leburton, J. P. Anomalous quantum-confined stark effects in stacked InAs/GaAs self-assembled quantum dots. Phys. Rev. Lett. 88, 167401 (2002). doi: 10.1103/PhysRevLett.88.167401
[6] Emary, C. & Sham, L. J. Optically controlled logic gates for two spin qubits in vertically coupled quantum dots. Phys. Rev. B 75, 125317 (2007). doi: 10.1103/PhysRevB.75.125317
[7] Weiss, K. M. et al. Coherent two-electron spin qubits in an optically active pair of coupled InGaAs quantum dots. Phys. Rev. Lett. 109, 107401 (2012). doi: 10.1103/PhysRevLett.109.107401
[8] Villas-Bôas, J. M., Govorov, A. O. & Ulloa, S. E. Coherent control of tunneling in a quantum dot molecule. Phys. Rev. B 69, 125342 (2004). doi: 10.1103/PhysRevB.69.125342
[9] Xu, X. L., Williams, D. A. & Cleaver, J. A. R. Splitting of excitons and biexcitons in coupled InAs quantum dot molecules. Appl. Phys. Lett. 86, 012103 (2005). doi: 10.1063/1.1842861
[10] Vora, P. M. et al. Spin-cavity interactions between a quantum dot molecule and a photonic crystal cavity. Nat. Commun. 6, 7665 (2015). doi: 10.1038/ncomms8665
[11] Kerfoot, M. L. et al. Optophononics with coupled quantum dots. Nat. Commun. 5, 3299 (2014). doi: 10.1038/ncomms4299
[12] Thierschmann, H. et al. Three-terminal energy harvester with coupled quantum dots. Nat. Nanotechnol. 10, 854–858 (2015). doi: 10.1038/nnano.2015.176
[13] Rontani, M. et al. Molecular phases in coupled quantum dots. Phys. Rev. B 69, 085327 (2004). doi: 10.1103/PhysRevB.69.085327
[14] Zhou, X. R. et al. Coulomb interaction signatures in self-assembled lateral quantum dot molecules. Phys. Rev. B 87, 125309 (2013). doi: 10.1103/PhysRevB.87.125309
[15] Zhou, X. R. & Doty, M. Design of 4-electrode optical device for application of vector electric fields to self-assembled quantum dot complexes. J. Appl. Phys. 116, 163101 (2014). doi: 10.1063/1.4899184
[16] Doty, M. F. et al. Antibonding ground states in InAs quantum-dot molecules. Phys. Rev. Lett. 102, 047401 (2009). doi: 10.1103/PhysRevLett.102.047401
[17] Ma, X. Y. et al. Hole spins in an InAs/GaAs quantum dot molecule subject to lateral electric fields. Phys. Rev. B 93, 245402 (2016). doi: 10.1103/PhysRevB.93.245402
[18] De La Giroday, A. B. et al. Excitonic couplings and Stark effect in individual quantum dot molecules. J. Appl. Phys. 110, 083511 (2011). doi: 10.1063/1.3652766
[19] Ortner, G. et al. Control of vertically coupled InGaAs/GaAs quantum dots with electric fields. Phys. Rev. Lett. 94, 157401 (2005). doi: 10.1103/PhysRevLett.94.157401
[20] Kagan, C. R. & Murray, C. B. Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol. 10, 1013–1026 (2015). doi: 10.1038/nnano.2015.247
[21] Wijesundara, K. C. et al. Tunable exciton relaxation in vertically coupled semiconductor InAs quantum dots. Phys. Rev. B 84, 081404(R) (2011). doi: 10.1103/PhysRevB.84.081404
[22] Stinaff, E. A. et al. Optical signatures of coupled quantum dots. Science 311, 636–639 (2006). doi: 10.1126/science.1121189
[23] Krenner, H. J. et al. Optically probing spin and charge interactions in a tunable artificial molecule. Phys. Rev. Lett. 97, 076403 (2006). doi: 10.1103/PhysRevLett.97.076403
[24] Wang, L. J. et al. Self-assembled quantum dot molecules. Adv. Mater. 21, 2601–2618 (2009). doi: 10.1002/adma.200803109
[25] Liang, B. L. et al. Energy transfer within ultralow density twin InAs quantum dots grown by droplet epitaxy. ACS Nano 2, 2219–2224 (2008). doi: 10.1021/nn800224p
[26] Unold, T. et al. Optical control of excitons in a pair of quantum dots coupled by the dipole–dipole interaction. Phys. Rev. Lett. 94, 137404 (2005). doi: 10.1103/PhysRevLett.94.137404
[27] Kim, H. et al. Exciton dipole–dipole interaction in a single coupled-quantum-dot structure via polarized excitation. Nano Lett. 16, 7755–7760 (2016). doi: 10.1021/acs.nanolett.6b03868
[28] Beyer, J. et al. Spin injection in lateral InAs quantum dot structures by optical orientation spectroscopy. Nanotechnology 20, 375401 (2009). doi: 10.1088/0957-4484/20/37/375401
[29] Cundiff, S. T. et al. Optical coherence in semiconductors: strong emission mediated by nondegenerate interactions. Phys. Rev. Lett. 77, 1107–1110 (1996). doi: 10.1103/PhysRevLett.77.1107
[30] Guenther, T. et al. Coherent nonlinear optical response of single quantum dots studied by ultrafast near-field spectroscopy. Phys. Rev. Lett. 89, 057401 (2002). doi: 10.1103/PhysRevLett.89.057401
[31] Kim, H. et al. Light controlled optical Aharonov–Bohm oscillations in a single quantum ring. Nano Lett. 18, 6188–6194 (2018). doi: 10.1021/acs.nanolett.8b02131
[32] Santori, C. et al. Submicrosecond correlations in photoluminescence from InAs quantum dots. Phys. Rev. B 69, 205324 (2004). doi: 10.1103/PhysRevB.69.205324
[33] Sallen, G. et al. Subnanosecond spectral diffusion measurement using photon correlation. Nat. Photonics 4, 696–699 (2010). doi: 10.1038/nphoton.2010.174
[34] Wang, Z. M. et al. Unusual role of the substrate in droplet-induced GaAs/AlGaAs quantum-dot pairs. Phys. Status Solidi Rapid Res. Lett. 2, 281–283 (2008). doi: 10.1002/pssr.200802196
[35] Keizer, J. G. et al. Atomic scale analysis of self assembled GaAs/AlGaAs quantum dots grown by droplet epitaxy. Appl. Phys. Lett. 96, 062101 (2010). doi: 10.1063/1.3303979
[36] Takagahara, T. et al. Theory of exciton doublet structures and polarization relaxation in single quantum dots. Phys. Rev. B 62, 16840 (2000). doi: 10.1103/PhysRevB.62.16840
[37] Hafenbrak, R. et al. Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K. N. J. Phys. 9, 315 (2007). doi: 10.1088/1367-2630/9/9/315
[38] Kim, H. D. et al. Asymmetry of localised states in a single quantum ring: polarization dependence of excitons and biexcitons. Appl. Phys. Lett. 102, 033112 (2013). doi: 10.1063/1.4789519
[39] Kodriano, Y. et al. Radiative cascade from quantum dot metastable spin-blockaded biexciton. Phys. Rev. B 82, 155329 (2010). doi: 10.1103/PhysRevB.82.155329
[40] Hours, J. et al. Exciton radiative lifetime controlled by the lateral confinement energy in a single quantum dot. Phys. Rev. B 71, 161306(R) (2005). doi: 10.1103/PhysRevB.71.161306
[41] Adachi, S. et al. Exciton-exciton interaction and heterobiexcitons in GaN. Phys. Rev. B 67, 205212 (2003). doi: 10.1103/PhysRevB.67.205212