[1] Huang, D. et al. Optical coherence tomography. Science 254, 1178-1181 (1991). doi: 10.1126/science.1957169
[2] Shemonski, N. D. et al. Computational high-resolution optical imaging of the living human retina. Nat. Photonics 9, 440-443 (2015). doi: 10.1038/nphoton.2015.102
[3] Siddiqui, M. et al. High-speed optical coherence tomography by circular interferometric ranging. Nat. Photonics 12, 111-116 (2018). doi: 10.1038/s41566-017-0088-x
[4] Robles, F. E., Wilson, C., Grant, G. & Wax, A. Molecular imaging true-colour spectroscopic optical coherence tomography. Nat. Photonics 5, 744-747 (2011). doi: 10.1038/nphoton.2011.257
[5] Targowski, P. & Iwanicka, M. Optical coherence tomography: its role in the non-invasive structural examination and conservation of cultural heritage objects—a review. Appl. Phys. A 106, 265-277 (2012). doi: 10.1007/s00339-011-6687-3
[6] Stifter, D. Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography. Appl. Phys. B 88, 337-357 (2007). doi: 10.1007/s00340-007-2743-2
[7] Zeitler, J. A. & Gladden, L. F. In vitro tomography and non-destructive imaging at depth of pharmaceutical solid dosage forms. Eur. J. Pharm. Biopharm. 71, 2-22 (2009). doi: 10.1016/j.ejpb.2008.08.012
[8] Swanson, E. A. & Fujimoto, J. G. The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact[Invited]. Biomed. Opt. Express 8, 1638-1664 (2017).
[9] Koller, D. M., Hannesschläger, G., Leitner, M. & Khinast, J. G. Non-destructive analysis of tablet coatings with optical coherence tomography. Eur. J. Pharm. Sci. 44, 142-148 (2011). doi: 10.1016/j.ejps.2011.06.017
[10] Stifter, D. et al. Investigation of polymer and polymer/fibre composite materials with optical coherence tomography. Meas. Sci. Technol. 19, 074011 (2008). doi: 10.1088/0957-0233/19/7/074011
[11] Cho, N. H., Jung, U., Kim, S. & Kim, J. Non-destructive inspection methods for LEDs using real-time displaying optical coherence tomography. Sensors 12, 10395-10406 (2012). doi: 10.3390/s120810395
[12] Czajkowski, J., Prykäri, T., Alarousu, E., Palosaari, J. & Myllylä, R. Optical coherence tomography as a method of quality inspection for printed electronics products. Opt. Rev. 17, 257-262 (2010). doi: 10.1007/s10043-010-0045-0
[13] Prykäri, T., Czajkowski, J., Alarousu, E. & Myllylä, R. Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry. Opt. Rev. 17, 218-222 (2010). doi: 10.1007/s10043-010-0039-y
[14] Su, R. et al. Optical coherence tomography for quality assessment of embedded microchannels in alumina ceramic. Opt. Express 20, 4603-4618 (2012). doi: 10.1364/OE.20.004603
[15] Cheung, C. S., Daniel, J. M. O., Tokurakawa, M., Clarkson, W. A. & Liang, H. High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source. Opt. Express 23, 1992-2001 (2015). doi: 10.1364/OE.23.001992
[16] Cheung, C. S., Daniel, J. M. O., Tokurakawa, M., Clarkson, W. A. & Liang, H. Optical coherence tomography in the 2-μm wavelength regime for paint and other high opacity materials. Opt. Lett. 39, 6509-6512 (2014). doi: 10.1364/OL.39.006509
[17] Sharma, U., Chang, E. W. & Yun, S. H. Long-wavelength optical coherence tomography at 1.7 μm for enhanced imaging depth. Opt. Express 16, 19712-19723 (2008). doi: 10.1364/OE.16.019712
[18] Ishida, S. & Nishizawa, N. Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700 nm wavelength region. Biomed. Opt. Express 3, 282-294 (2012). doi: 10.1364/BOE.3.000282
[19] Su, R. et al. Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics. Opt. Express 22, 15804-15819 (2014). doi: 10.1364/OE.22.015804
[20] Colley, C. S et al. Mid-infrared optical coherence tomography: application in tissue engineering. In Biomedical Topical Meeting 2006 (OSA, Fort Lauderdale, 2006) http://www.osa.org/osaorg/media/osa.media/Meetings/Archives/2006/biomed/BIOMED_2006_Final_Archive.pdf.
[21] Colley, C. S. et al. Mid-infrared optical coherence tomography. Rev. Sci. Instrum. 78, 123108 (2007). doi: 10.1063/1.2821609
[22] Varnell, D., Zheng, M. C., Chow, M. & Gmachl, C. Spectroscopy and imaging using a mid-IR quantum cascade optical coherence tomography (OCT) system. In CLEO: Applications and Technology 2016 (OSA, San Jose, 2016).
[23] Paterova, A. V., Yang, H. Z., An, C. W., Kalashnikov, D. A. & Krivitsky, L. A. Tunable optical coherence tomography in the infrared range using visible photons. Quantum Sci. Technol. 3, 025008 (2018). doi: 10.1088/2058-9565/aab567
[24] Israelsen, N. M. et al. The value of ultrahigh resolution OCT in dermatology—delineating the dermo-epidermal junction, capillaries in the dermal papillae and vellus hairs. Biomed. Opt. Express 9, 2240-2265 (2018).
[25] Petersen, C. R., Moselund, P. M., Huot, L., Hooper, L. & Bang, O. Towards a table-top synchrotron based on supercontinuum generation. Infrared Phys. Technol. 91, 182-186 (2018). doi: 10.1016/j.infrared.2018.04.008
[26] Dam, J. S., Tidemand-Lichtenberg, P. & Pedersen, C. Room-temperature mid-infrared single-photon spectral imaging. Nat. Photonics 6, 788-793 (2012). doi: 10.1038/nphoton.2012.231
[27] Pedersen, C., Karamehmedović, E., Dam, J. S. & Tidemand-Lichtenberg, P. Enhanced 2D-image upconversion using solid-state lasers. Opt. Express 17, 20885-20890 (2009). doi: 10.1364/OE.17.020885
[28] Su, R., Chang, E., Ekberg, P., Yun S. & Mattsson L. Enhancement of probing depth and measurement accuracy of optical coherence tomography for metrology of multi-layered ceramics. In Proc. 1st International Symposium on Optical Coherence Tomography for Non-Destructive Testing 71-73 (Linz, Austria, 2013) http://www.diva-portal.org/smash/record.jsf?dswid=4763&pid=diva2%3A662817&c=81&searchType=SIMPLE&language=en&query=optical+coherence+tomography+&af=%5B%5D&aq=%5B%5B%5D%5D&aq2=%5B%5B%5D%5D&aqe=%5B%5D&noOfRows=250&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullText=false&sf=all.
[29] Jensen, M. et al. All-depth dispersion cancellation in spectral domain optical coherence tomography using numerical intensity correlations. Sci. Rep. 8, 9170 (2018). doi: 10.1038/s41598-018-27388-z
[30] Li, H. H. Refractive index of silicon and germanium and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data 9, 561-658 (1980). doi: 10.1063/1.555624
[31] Suchowski, H., Oron, D., Arie, A. & Silberberg, Y. Geometrical representation of sum frequency generation and adiabatic frequency conversion. Phys. Rev. A 78, 063821 (2008). doi: 10.1103/PhysRevA.78.063821
[32] Gao, S. M., Yang, C. X. & Jin, G. F. Flat broad-band wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate. IEEE Photonics Technol. Lett. 16, 557-559 (2004). doi: 10.1109/LPT.2003.823102
[33] RefractiveIndex. INFO—Refractive index database https://refractiveindex.info/.
[34] Makita, S., Fabritius, T. & Yasuno, Y. Full-range, high-speed, high-resolution 1-µm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye. Opt. Express 16, 8406-8420 (2008). doi: 10.1364/OE.16.008406
[35] Fang, Q. Q. & Boas, D. A. Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Opt. Express 17, 20178-20190 (2009). doi: 10.1364/OE.17.020178