[1] Taruttis, A. & Ntziachristos, V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Phot. 9, 219–227 (2015). doi: 10.1038/nphoton.2015.29
[2] Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science (80-) 335, 1458–1462 (2012). doi: 10.1126/science.1216210
[3] Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7, 603–614 (2010). doi: 10.1038/nmeth.1483
[4] Beard, P. Biomedical photoacoustic imaging. Interface Focus 1, 602–631 (2011). doi: 10.1098/rsfs.2011.0028
[5] Xu, M. & Wang, L. V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77, 1–22 (2006).
[6] Strohm, E. M., Moore, M. J. & Kolios, M. C. High resolution ultrasound and photoacoustic imaging of single cells. Photoacoustics 4, 36–42 (2016). doi: 10.1016/j.pacs.2016.01.001
[7] Omar, M., Schwarz, M., Soliman, D., Symvoulidis, P. & Ntziachristos, V. Pushing the optical imaging limits of cancer with multi-frequency-band raster-scan optoacoustic mesoscopy (RSOM). Neoplasia 17, 208–214 (2015). doi: 10.1016/j.neo.2014.12.010
[8] Hoskins, P. Diagnostic Ultrasound: Physics and Equipment (United States of America by Cambridge University Press, New York, 2003).
[9] American National Standard for Safe Use of Lasers. Z136.1 (Laser Institute of America / 13501 Ingenuity Drive, Suite 128 / Orlando, FL 32826, USA, 2007).
[10] Winkler, A. M., Maslov, K. & Wang, L. V. Noise-equivalent sensitivity of photoacoustics. J. Biomed. Opt. 18, 97003 (2013). doi: 10.1117/1.JBO.18.9.097003
[11] Rosenthal, A., Razansky, D. & Ntziachristos, V. High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating. Opt. Lett. 36, 1833–1835 (2011). doi: 10.1364/OL.36.001833
[12] Wissmeyer, G., Soliman, D., Shnaiderman, R., Rosenthal, A. & Ntziachristos, V. All-optical optoacoustic microscope based on wideband pulse interferometry. Opt. Lett. 41, 1953–1956 (2016). doi: 10.1364/OL.41.001953
[13] Jiang, H. Photoacoustic Tomography (CRC Press / Taylor & Francis Group / 6000 Broken Sound Pkwy NW #300 / Boca Raton, FL 33487, USA, 2014).
[14] Rebling, J., Warshavski, O., Meynier, C. & Razansky, D. Optoacoustic characterization of broadband directivity patterns of capacitive micromachined ultrasonic transducers. J. Biomed. Opt. 22, 41005 (2016). doi: 10.1117/1.JBO.22.4.041005
[15] Yang, S. et al. Design and evaluation of a compound acoustic lens for photoacoustic computed tomography. Biomed. Opt. Express 8, 2756 (2017). doi: 10.1364/BOE.8.002756
[16] Li, H., Dong, B., Zhang, Z., Zhang, H. F. & Sun, C. A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy. Sci. Rep. 4, 4496 (2014).
[17] Xia, W. et al. An optimized ultrasound detector for photoacoustic breast tomography. Med Phys. 40, 32901 (2013). doi: 10.1118/1.4792462
[18] Brodie, G., Qiu, Y., Cochran, S., Spalding, G. & MacDonald, M. Optically transparent piezoelectric transducer for ultrasonic particle manipulation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 389–391 (2014). doi: 10.1109/TUFFC.2014.2923
[19] Qiu, Y. et al. Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging. Sensors 15, 8020–8041 (2015). doi: 10.3390/s150408020
[20] Khuri-Yakub, B. T. & Oralkan, Ö. Capacitive micromachined ultrasonic transducers for medical imaging and therapy. J. Micromech. Microeng. 21, 54004 (2011). doi: 10.1088/0960-1317/21/5/054004
[21] Wygant, I. O. et al. Integration of 2D CMUT arrays with front-end electronics for volumetric ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 327–341 (2008). doi: 10.1109/TUFFC.2008.652
[22] Dong, B., Sun, C. & Zhang, H. F. Optical detection of ultrasound in photoacoustic imaging. IEEE Trans. Biomed. Eng. 64, 4–15 (2017). doi: 10.1109/TBME.2016.2605451
[23] Frocht, M. M. Photoelasticity 1st edn, (Wiley and Sons, New York and London, 1965).
[24] Zhu, X. et al. Ultrasonic detection based on polarization-dependent optical reflection. Opt. Lett. 42, 439–441 (2017). doi: 10.1364/OL.42.000439
[25] Wang, T. et al. All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound. Appl. Phys. Lett. 107, 153702 (2015). doi: 10.1063/1.4933333
[26] Nuster, R., Paltauf, G. & Burgholzer, P. Comparison of surface plasmon resonance devices for acoustic wave detection in liquid. Opt. Express 15, 6087–6095 (2007). doi: 10.1364/OE.15.006087
[27] Paltauf, G., Schmidt-Kloiber, H., Köstli, K. P. & Frenz, M. Optical method for two-dimensional ultrasonic detection. Appl. Phys. Lett. 75, 1048 (1999). doi: 10.1063/1.124592
[28] Parsons, J., Cain, C. & Fowlkes, J. B. Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields. J. Acoust. Soc. Am. 119, 1432–1440 (2006). doi: 10.1121/1.2166708
[29] Hajireza, P., Shi, W., Bell, K., Paproski, R. J. & Zemp, R. J. Non-interferometric photoacoustic remote sensing microscopy. Light Sci. Appl. 6, e16278 (2017).
[30] Maswadi, S. M. et al. All-optical optoacoustic microscopy based on probe beam deflection technique. Photoacoustics 4, 91–101 (2016). doi: 10.1016/j.pacs.2016.02.001
[31] Barnes, R. A., Maswadi, S., Glickman, R. & Shadaram, M. Probe beam deflection technique as acoustic emission directionality sensor with photoacoustic emission source. Appl. Opt. 53, 511–519 (2014). doi: 10.1364/AO.53.000511
[32] Raman, C. V. & Nagendra Nath, N. S. The diffraction of light by high frequency sound waves: part I. Proc. Indian Acad. Sci. 2, 406–412 (1935). doi: 10.1007/BF03035840
[33] Kudo, N. Optical methods for visualization of ultrasound fields. Jpn J. Appl. Phys. 54, 07HA01 (2015).
[34] Nuster, R., Slezak, P. & Paltauf, G. High resolution three-dimensional photoacoutic tomography with CCD-camera based ultrasound detection. Biomed. Opt. Express 5, 2635 (2014). doi: 10.1364/BOE.5.002635
[35] Zanelli, C. I. & Howard, S. M. Schlieren metrology for high frequency medical ultrasound. Ultrasonics 44, 105–107 (2006). doi: 10.1016/j.ultras.2006.06.062
[36] Nuster, R., Slezak, P. & Paltauf, G. Light-sheet photoacoustic microscopy (LIS-PAM) with optical ultrasound detection. Proc. SPIE 9708, 97082E (2016).
[37] Niederhauser, J. J., Jaeger, M. & Frenz, M. Real-time three-dimensional optoacoustic imaging using an acoustic lens system. Appl. Phys. Lett. 85, 846–848 (2004). doi: 10.1063/1.1777820
[38] Nuster, R. et al. Hybrid photoacoustic and ultrasound section imaging with optical ultrasound detection. J. Biophotonics 6, 549–559 (2013). doi: 10.1002/jbio.201200223
[39] Jen, E., Lin, H. & Chiang, H. K. Three-dimensional photoacoustic imaging system with a 4f aspherical acoustic lens. Opt. Eng. 55, 85102 (2016). doi: 10.1117/1.OE.55.8.085102
[40] Chen, Z., Tang, Z. & Wan, W. Photoacoustic tomography imaging based on a 4f acoustic lens imaging system. Opt. Express 15, 4966–4976 (2007). doi: 10.1364/OE.15.004966
[41] He, Y., Tang, Z., Chen, Z., Wan, W. & Li, J. A novel photoacoustic tomography based on a time-resolved technique and an acoustic lens imaging system. Phys. Med Biol. 51, 2671–2680 (2006). doi: 10.1088/0031-9155/51/10/019
[42] Deferrari, H. A. & Andrews, F. A. Technique for measuring small‐order vibration displacements. J. Acoust. Soc. Am. 39, 979 (1966). doi: 10.1121/1.1909984
[43] Deferrari, H. A. Vibrational displacement and mode-shape measurement by a laser interferometer. J. Acoust. Soc. Am. 42, 982 (1967). doi: 10.1121/1.1910707
[44] Paltauf, G., Nuster, R., Haltmeier, M. & Burgholzer, P. Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector. Appl. Opt. 46, 3352–3358 (2007). doi: 10.1364/AO.46.003352
[45] Bauer-Marschallinger, J., Felbermayer, K., Hochreiner, A., Burgholzer, P. & Berer, T. Low-cost parallelization of optical fiber based detectors for photoacoustic imaging. Proc. SPIE Photons Ultrasound Imaging Sens. 2013 8581, 1–8 (2013).
[46] Thomson, J. K., Wickramasinghe, H. K. & Ash, E. A. A Fabry-Perot acoustic surface vibration detector - application to acoustic holography. J. Phys. D. Appl. Phys. 6, 677–687 (1973). doi: 10.1088/0022-3727/6/6/310
[47] Wickramasinghe, H. K. High Frequency Acoustic Holography in Solids (Springer, US, 1974).
[48] Bucaro, J. A. Fiber-optic hydrophone. J. Acoust. Soc. Am. 62, 1302 (1977). doi: 10.1121/1.381624
[49] Shajenko, P., Flatley, J. P. & Moffett, M. B. On fiber-optic hydrophone sensitivity. J. Acoust. Soc. Am. 64, 1286 (1978). doi: 10.1121/1.382113
[50] Layton, M. R. & Bucaro, J. A. Optical fiber acoustic sensor utilizing mode-mode interference. Appl. Opt. 18, 666–670 (1979). doi: 10.1364/AO.18.000666
[51] Huang, J. & Achenbach, J. D. Dual-probe laser interferometer. J. Acoust. Soc. Am. 90, 1269–1274 (1991). doi: 10.1121/1.401919
[52] Cand, A., Monchalin, J. P. & Jia, X. Detection of in-plane and out-of-plane ultrasonic displacements by a two-channel confocal Fabry-Perot interferometer. Appl. Phys. Lett. 64, 414–416 (1994). doi: 10.1063/1.111141
[53] Dewhurst, R. J. & Shan, Q. Optical remote measurement of ultrasound. Meas. Sci. Technol. 10, R139–R168 (1999).
[54] Scruby, C. & Drain, L. Laser Ultrasonics Techniques and Applications (Taylor & Francis Group / 270 Madison Ave / New York, NY 10016, USA, 1990).
[55] Berer, T., Hochreiner, A., Zamiri, S. & Burgholzer, P. Remote photoacoustic imaging on solid material using a two-wave mixing interferometer. Opt. Lett. 35, 4151–4153 (2010). doi: 10.1364/OL.35.004151
[56] Horstmann, J., Spahr, H., Buj, C., Münter, M. & Brinkmann, R. Full-field speckle interferometry for non-contact photoacoustic tomography. Phys. Med Biol. 60, 4045–4058 (2015). doi: 10.1088/0031-9155/60/10/4045
[57] Park, S. J., Eom, J., Kim, Y. H., Lee, C. S. & Lee, B. H. Noncontact photoacoustic imaging based on all-fiber heterodyne interferometer. Opt. Lett. 39, 4903–4906 (2014). doi: 10.1364/OL.39.004903
[58] Lamela, H., Gallego, D. & Oraevsky, A. Optoacoustic imaging using fiber-optic interferometric sensors. Opt. Lett. 34, 3695–3697 (2009). doi: 10.1364/OL.34.003695
[59] Bauer-Marschallinger, J., Felbermayer, K. & Berer, T. All-optical photoacoustic projection imaging. Biomed. Opt. Express 8, 3938 (2017). doi: 10.1364/BOE.8.003938
[60] Nuster, R. et al. Photoacoustic microtomography using optical interferometric detection. J. Biomed. Opt. 15, 21307 (2010). doi: 10.1117/1.3333547
[61] Hamilton, J. D. & Donnell, M. O. High frequency ultrasound imaging with optical arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 216–235 (1998). doi: 10.1109/58.646927
[62] Zhang, E., Laufer, J. & Beard, P. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry Perot polymer film ultrasound sensor for high resolution three-dimensional imaging of biological tissues. Appl. Opt. 47, 561–577 (2008). doi: 10.1364/AO.47.000561
[63] Preisser, S. et al. All-optical highly sensitive akinetic sensor for ultrasound detection and photoacoustic imaging. Biomed. Opt. Express 7, 9027–9034 (2016).
[64] Rohringer, W. et al. All-optical highly sensitive broadband ultrasound sensor without any deformable parts for photoacoustic imaging. Proc. SPIE 9708, 151–158 (2016).
[65] Ashkenazi, S., Hou, Y., Buma, T. & O'Donnell, M. Optoacoustic imaging using thin polymer étalon. Appl. Phys. Lett. 86, 1–3 (2005).
[66] Beard, P. C., Perennes, F. & Mills, T. N. Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1575–1582 (1999). doi: 10.1109/58.808883
[67] Hajireza, P., Krause, K., Brett, M. & Zemp, R. Glancing angle deposited nanostructured film Fabry-Perot etalons for optical detection of ultrasound. Opt. Express 21, 6391–6400 (2013). doi: 10.1364/OE.21.006391
[68] Hamilton, J. D. High frequency optoacoustic arrays using etalon detection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 160–169 (2000). doi: 10.1109/58.818758
[69] Huang, S. W., Hou, Y., Ashkenazi, S. & O'Donnell, M. High-resolution ultrasonic imaging using an etalon detector array. Appl. Phys. Lett. 93, 1–4 (2008).
[70] Maxwell, A. et al. Polymer microring resonators for high-frequency ultrasound detection and imaging. IEEE J. Sel. Top. Quantum Electron 14, 191–197 (2008). doi: 10.1109/JSTQE.2007.914047
[71] Chao, C., Ashkenazi, S., Huang, S., O'Donnell, M. & Guo, L. High-frequency ultrasound sensors using polymer microring resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 957–965 (2007). doi: 10.1109/TUFFC.2007.341
[72] Leinders, S. M. et al. Design and characterization of a sensitive optical micro-machined ultrasound transducer. J. Acoust. Soc. Am. 137, 2426 (2015).
[73] Wu, Q. & Okabe, Y. High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system. Opt. Express 20, 28353–28362 (2012). doi: 10.1364/OE.20.028353
[74] Ma, Z. G., Jia, P. G., Liang, Q. B., Xie, L. F. & Wang, D. H. Tip-sensitive fibre-optic Bragg grating ultrasonic hydrophone for measuring high-intensity focused ultrasound fields. Electron Lett. 50, 649–650 (2014). doi: 10.1049/el.2013.3961
[75] Shnaiderman, R., et al. Fiber interferometer for hybrid optical and optoacoustic intravital microscopy. Optica; 4 https://doi.org/10.1364/OPTICA.4.001180 (2017).
[76] Laufer, J., Zhang, E., Raivich, G. & Beard, P. Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner. Appl. Opt. 48, D299 (2009).
[77] Guggenheim, J. A. et al. Ultrasensitive plano-concave optical microresonators for ultrasound sensing. Nat. Photonics 11, 714–719 (2017). doi: 10.1038/s41566-017-0027-x
[78] Chen, S.-L., Huang, S.-W., Ling, T., Ashkenazi, S. & Guo, L. Polymer microring resonators for high-sensitivity and wideband photoacoustic imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 2482–2491 (2009). doi: 10.1109/TUFFC.2009.1335
[79] Rosenthal, A. et al. Sensitive interferometric detection of ultrasound for minimally invasive clinical imaging applications. Laser Photonics Rev. 8, 450–457 (2014). doi: 10.1002/lpor.201300204
[80] Rosenthal, A., Caballero, M. Á. A., Kellnberger, S., Razansky, D. & Ntziachristos, V. Spatial characterization of the response of a silica optical fiber to wideband ultrasound. Opt. Lett. 37, 3174–3176 (2012). doi: 10.1364/OL.37.003174
[81] Rosenthal, A. et al. Embedded ultrasound sensor in a silicon-on-insulator photonic platform. Appl. Phys. Lett. 104, 21116 (2014). doi: 10.1063/1.4860983
[82] Tsesses, S., Aronovich, D., Grinberg, A., Hahamovich, E. & Rosenthal, A. Modeling the sensitivity dependence of silicon-photonics-based ultrasound detectors. Opt. Lett. 42, 5262–5265 (2017). doi: 10.1364/OL.42.005262
[83] Rousseau, G., Blouin, A. & Monchalin, J. P. Non-contact photoacoustic tomography and ultrasonography for tissue imaging. Biomed. Opt. Express 3, 16–25 (2012). doi: 10.1364/BOE.3.000016
[84] Berer, T. et al. Characterization of broadband fiber optic line detectors for photoacoustic tomography. J. Biophotonics 5, 518–528 (2012). doi: 10.1002/jbio.201100110
[85] Veres, I. A. et al. Characterization of the spatio-temporal response of optical fiber sensors to incident spherical waves. J. Acoust. Soc. Am. 135, 1853–1862 (2014). doi: 10.1121/1.4868391
[86] Monchalin, J. P. Optical detection of ultrasound at a distance using a confocal Fabry-Perot interferometer. Appl. Phys. Lett. 47, 14–16 (1985). doi: 10.1063/1.96411
[87] Monchalin, J. P. Optical detection of ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 485–499 (1986). doi: 10.1109/T-UFFC.1986.26860
[88] Hochreiner, A., Bauer-Marschallinger, J., Burgholzer, P., Jakoby, B. & Berer, T. Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification. Biomed. Opt. Express 4, 2322–2331 (2013). doi: 10.1364/BOE.4.002322
[89] Gabai, H., Steinberg, I. & Eyal, A. Multiplexing of fiber-optic ultrasound sensors via swept frequency interferometry. Opt. Express 23, 18915–18924 (2015). doi: 10.1364/OE.23.018915
[90] Cranch, Ga, Nash, P. J. & Kirkendall, C. K. Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications. IEEE Sens. J. 3, 19–30 (2003). doi: 10.1109/JSEN.2003.810102
[91] Bauer-Marschallinger, J. et al. Photoacoustic projection imaging using a 64-channel fiber optic detector array. SPIE BiOS 9323, 93233U (2015).
[92] Rosenthal, A., Razansky, D. & Ntziachristos, V. Wideband optical sensing using pulse interferometry. Opt. Express 20, 19016–19029 (2012). doi: 10.1364/OE.20.019016
[93] Gatti, D., Galzerano, G., Janner, D., Longhi, S. & Laporta, P. Fiber strain sensor based on a π-phase-shifted Bragg grating and the Pound-Drever-Hall technique. Opt. Express 16, 1945–1950 (2008). doi: 10.1364/OE.16.001945
[94] Avino, S. et al. Musical instrument pickup based on a laser locked to an optical fiber resonator. Opt. Express 19, 25057–25065 (2011). doi: 10.1364/OE.19.025057
[95] Eom, J., Park, S. J. & Lee, B. H. Noncontact photoacoustic tomography of in vivo chicken chorioallantoic membrane based on all-fiber heterodyne interferometry. J. Biomed. Opt. 20, 106007 (2015). doi: 10.1117/1.JBO.20.10.106007
[96] Kersey, A. D. et al. Fiber grating sensors. Light Technol. J. 15, 1442–1463 (1997). doi: 10.1109/50.618377
[97] Carp, S. A., Guerra, A., Duque, S. Q. & Venugopalan, V. Optoacoustic imaging using interferometric measurement of surface displacement. Appl. Phys. Lett. 85, 5772–5774 (2004). doi: 10.1063/1.1831569
[98] Blatter, C. et al. Intrasweep phase-sensitive optical coherence tomography for noncontact optical photoacoustic imaging. Opt. Lett. 37, 4368–4370 (2012). doi: 10.1364/OL.37.004368
[99] Rousseau, G., Gauthier, B., Blouin, A. & Monchalin, J. P. Non-contact biomedical photoacoustic and ultrasound imaging. J. Biomed. Opt. 17, 1–7 (2012).
[100] Wang, Y., Li, C. & Wang, R. K. Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector. Opt. Lett. 36, 3975 (2011). doi: 10.1364/OL.36.003975
[101] Horstmann J., Brinkmann R., Non-contact photoacoustic tomography using holographic full field detection. Proc. SPIE 8800, Opto-Acoustic Methods and Applications, p. 880007, (2013) https://doi.org/10.1117/12.2033599.
[102] Buj, C., Horstmann, J., Münter, M. & Brinkmann, R. Speckle-based holographic detection for non-contact photoacoustic tomography. Biomed. Tech. 59, 356–360 (2014).
[103] Chimenti, D. E. Review of air-coupled ultrasonic materials characterization. Ultrasonics 54, 1804–1816 (2014). doi: 10.1016/j.ultras.2014.02.006
[104] Leiss-Holzinger, E., Bauer-Marschallinger, J., Hochreiner, A., Hollinger, P. & Berer, T. Dual modality noncontact photoacoustic and spectral domain OCT imaging. Ultrason. Imaging 38, 19–31 (2016). doi: 10.1177/0161734615582003
[105] Laufer, J. et al. In vivo photoacoustic imaging of mouse embryos. J. Biomed. Opt. 17, 61220 (2012). doi: 10.1117/1.JBO.17.6.061220
[106] Liu, M. et al. Dual modality optical coherence and whole-body photoacoustic tomography imaging of chick embryos in multiple development stages. Biomed. Opt. Express 5, 3150–3159 (2014). doi: 10.1364/BOE.5.003150
[107] Laufer, J. et al. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy. J. Biomed. Opt. 17, 0560161–0560168 (2012).
[108] Zhang, E. Z. et al. Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging. Biomed. Opt. Express 2, 2202–2215 (2012).
[109] Zabihian, B. et al. In vivo dual-modality photoacoustic and optical coherence tomography imaging of human dermatological pathologies. Biomed. Opt. Express 6, 3163–3178 (2015). doi: 10.1364/BOE.6.003163
[110] Wurzinger, G. et al. Simultaneous three-dimensional photoacoustic and laser-ultrasound tomography. Biomed. Opt. Express 4, 1380–1389 (2013). doi: 10.1364/BOE.4.001380
[111] Dong, B. et al. Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection. Optica 2, 169–176 (2015). doi: 10.1364/OPTICA.2.000169
[112] Fonslow, B. R. et al. Miniaturized all-optical photoacoustic microscopy based on MEMS mirror scanning. Opt. Lett. 37, 4263–4265 (2012). doi: 10.1364/OL.37.004263
[113] Xie, Z. et al. Pure optical photoacoustic microscopy. Opt. Express 19, 9027–9034 (2011). doi: 10.1364/OE.19.009027
[114] Yao, J. & Wang, L. V. Photoacoustic microscopy. Laser Phot Rev. 7, 1–36 (2014).
[115] Ansari, R., Zhang, E. Z., Desjardins, A. E. & Beard, P. C. All-optical forward-viewing endoscopic probe for high resolution 3D photoacoustic tomography. Proc. SPIE 10064, 1–6 (2017).
[116] Ansari, R., Zhang, E., Mathews, S., Desjardins, A. E. & Beard, P. C. Photoacoustic endoscopy probe using a coherent fibre-optic bundle. Eur. Conf. Biomed. Opt. 9539, 953905–953905 (2015).
[117] Zhang, E. Z. & Beard, P. C. A miniature all-optical photoacoustic imaging probe. Proc. SPIE 7899, 78991F–1–78991F–6 (2011).
[118] Dong, B., Chen, S., Zhang, Z., Sun, C. & Zhang, H. F. Photoacoustic probe using a microring resonator ultrasonic sensor for endoscopic applications. Opt. Lett. 39, 4372–4375 (2014). doi: 10.1364/OL.39.004372
[119] Finlay, M. C. et al. Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study. Light Sci. Appl. 6, e17103 (2017).
[120] Kellnberger, S. et al. Magnetoacoustic sensing of magnetic nanoparticles. Phys. Rev. Lett. 116, 108103 (2016). doi: 10.1103/PhysRevLett.116.108103
[121] Towe, B. C. & Islam, M. R. A magneto-acoustic method for the noninvasive measurement of bioelectric currents. IEEE Trans. Biomed. Eng. 35, 892–894 (1988). doi: 10.1109/10.7300
[122] Scott, G., Arbabian, A. & Aliroteh, M. S. Frequency-modulated magneto-acoustic detection and imaging. Electron Lett. 50, 790–792 (2014). doi: 10.1049/el.2014.0997
[123] Piao, D., Towner, R. A., Smith, N. & Chen, W. R. Magnetothermoacoustics from magnetic nanoparticles by short bursting or frequency chirped alternating magnetic field: a theoretical feasibility analysis. Med. Phys. 40, 63301 (2013). doi: 10.1118/1.4804056
[124] Nie, L., Ou, Z., Yang, S. & Xing, D. Thermoacoustic molecular tomography with magnetic nanoparticle contrast agents for targeted tumor detection. Med. Phys. 37, 4193–4200 (2010). doi: 10.1118/1.3466696
[125] Monchalin, J.-P. Laser-ultrasonics: from the laboratory to industry. AIP Conf. Proc. 23, 3–31 (2004).
[126] Drake, T. E., Yawn, K. R., Chuang, S. Y., Worth, F. & Osterkamp, M. A. Affordable NDE of aerospace composites with laser ultrasonics. Rev. Prog. Quant. Nondestruct. Eval. 17, 587–593 (1998).
[127] Marc Choquet, M. et al. Laser-ultrasonic inspection of the composite structure of an aircraft in a maintenance hangar. Rev. Prog. Quant. Nondestruct. Eval. 14, 545–552 (1991). https://www.ndt.net/search/docs.php3?MainSource=68&rppoffset=40NDT/NDT.net
[128] Drewry, M. A. & Georgiou, G. A. A review of NDT techniques for wind turbines. Non-Destr. Test. Cond. Monit. 49, 137–141 (2007). doi: 10.1784/insi.2007.49.3.137
[129] Ochiai, M. Development and applications of laser-ultrasonic testing in nuclear industry. In Proc. 1st International Symposium Laser Ultrasonics (Montreal, Canada, 2008).
[130] Monchalin, J. P. et al. Laser-ultrasonics: from the laboratory to the shop floor. Adv. Perform. Mater. 5, 7–23 (1998). doi: 10.1023/A:1008644903553
[131] Pelivanov, I., Buma, T., Xia, J., Wei, C. W. & O'Donnell, M. NDT of fiber-reinforced composites with a new fiber-optic pump-probe laser-ultrasound system. Photoacoustics 2, 63–74 (2014). doi: 10.1016/j.pacs.2014.01.001
[132] Pelivanov, I. et al. High resolution imaging of impacted CFRP composites with a fiber-optic laser-ultrasound scanner. Photoacoustics 4, 55–64 (2016). doi: 10.1016/j.pacs.2016.05.002
[133] Dehoux, T. et al. All-optical broadband ultrasonography of single cells. Sci. Rep. 5, 8650 (2015). doi: 10.1038/srep08650
[134] Huynh, N. et al. A real-time ultrasonic field mapping system using a Fabry Pérot single pixel camera for 3D photoacoustic imaging. Proc. SPIE Photons Ultrasound Imaging Sens. 2015 9323, 93231O (2015).
[135] Lamont, M. & Beard, P. C. 2D imaging of ultrasound fields using CCD array to map output of Fabry-Perot polymer film sensor. Electron Lett. 42, 187–189 (2006). doi: 10.1049/el:20064135
[136] Cong, B. et al. A fast acoustic field mapping approach based on fabry-perot sensor with high-speed camera. IEEJ Trans. Electr. Electron Eng. 9, 477–483 (2014). doi: 10.1002/tee.21996
[137] Zhang, C., Chen, S. L., Ling, T. & Guo, L. J. Review of imprinted polymer microrings as ultrasound detectors: Design, fabrication, and characterization. IEEE Sens. J. 15, 3241–3248 (2015). doi: 10.1109/JSEN.2015.2421519
[138] Zackrisson, S., van de Ven, S. M. W. Y. & Gambhir, S. S. Light In and sound out: emerging translational strategies for photoacoustic imaging. Cancer Res. 74, 979–1004 (2014). doi: 10.1158/0008-5472.CAN-13-2387
[139] Morris, P., Hurrell, A., Shaw, A., Zhang, E. & Beard, P. A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure. J. Acoust. Soc. Am. 125, 3611–3622 (2009). doi: 10.1121/1.3117437
[140] Rosenthal, A., Jaffer, F. A. & Ntziachristos, V. Intravascular multispectral optoacoustic tomography of atherosclerosis: prospects and challenges. Imaging Med. 3, 299–310 (2012).