[1] Snyder, A. W. & Love, J. Optical Waveguide Theory. (Springer: Berlin, 2012).
[2] Joannopoulos, J. D. et al. Photonic Crystals: Molding the Flow of Light. 2nd edn. (Princeton University Press, Princeton, 2008).
[3] Segev, M., Silberberg, Y. & Christodoulides, D. N. Anderson localization of light. Nat. Photonics 7, 197–204 (2013). doi: 10.1038/nphoton.2013.30
[4] Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Uspekhi 10, 509–514 (1968). doi: 10.1070/PU1968v010n04ABEH003699
[5] Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000). doi: 10.1103/PhysRevLett.85.3966
[6] Tamm, I. Über eine mögliche art der elektronenbindung an kristalloberflächen. Z. Phys. 76, 849–850 (1932). doi: 10.1007/BF01341581
[7] Shockley, W. On the surface states associated with a periodic potential. Phys. Rev. 56, 317–323 (1939). doi: 10.1103/PhysRev.56.317
[8] Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957). doi: 10.1103/PhysRev.106.874
[9] Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003). doi: 10.1038/nature01937
[10] D'yakonov, M. I. New type of electromagnetic wave propagating at an interface. Z. Eksp. Teor. Fiz. 11, 119–123 (1988).
[11] Takayama, O. et al. Observation of Dyakonov surface waves. Phys. Rev. Lett. 102, 043903 (2009). doi: 10.1103/PhysRevLett.102.043903
[12] Kane, C. L. & Mele, E. J. Quantum spin hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005). doi: 10.1103/PhysRevLett.95.226801
[13] König, M. et al. Quantum spin hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007). doi: 10.1126/science.1148047
[14] Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008). doi: 10.1038/nature06843
[15] Szameit, A. et al. Fresnel's laws in discrete optical media. N. J. Phys. 10, 103020 (2008). doi: 10.1088/1367-2630/10/10/103020
[16] Umucalılar, R. O. & Carusotto, I. Artificial gauge field for photons in coupled cavity arrays. Phys. Rev. A 84, 043804 (2011). doi: 10.1103/PhysRevA.84.043804
[17] Hafezi, M. et al. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011). doi: 10.1038/nphys2063
[18] Fang, K. J., Yu, Z. F. & Fan, S. H. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photonics 6, 782–787 (2012). doi: 10.1038/nphoton.2012.236
[19] Rechtsman, M. C. et al. Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nat. Photonics 7, 153–158 (2013). doi: 10.1038/nphoton.2012.302
[20] Madison, K. W. et al. Vortex formation in a stirred bose-einstein condensate. Phys. Rev. Lett. 84, 806–809 (2000). doi: 10.1103/PhysRevLett.84.806
[21] Lin, Y. J. et al. Synthetic magnetic fields for ultracold neutral atoms. Nature 462, 628–632 (2009). doi: 10.1038/nature08609
[22] Bernevig, B. A. & Hughes, T. L. Topological Insulators and Topological Superconductors. (Princeton University Press, Princeton, 2013).
[23] Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013). doi: 10.1038/nature12066
[24] Hafezi, M. et al. Imaging topological edge states in silicon photonics. Nat. Photonics 7, 1001–1005 (2013). doi: 10.1038/nphoton.2013.274
[25] Plotnik, Y. et al. Analogue of Rashba pseudo-spin-orbit coupling in photonic lattices by gauge field engineering. Phys. Rev. B 94, 020301 (2016). doi: 10.1103/PhysRevB.94.020301
[26] Lin, Q. & Fan, S. H. Light guiding by effective gauge field for photons. Phys. Rev. X 4, 031031 (2014).
[27] Lumer, Y. et al. Light guiding by artificial gauge fields. Nat. Photonics 13, 339–345 (2019). doi: 10.1038/s41566-019-0370-1
[28] Wu, L. H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015). doi: 10.1103/PhysRevLett.114.223901
[29] Shalaev, M. I. et al. Robust topologically protected transport in photonic crystals at telecommunication wavelengths. Nat. Nanotechnol. 14, 31–34 (2019). doi: 10.1038/s41565-018-0297-6
[30] Fang, K. J. & Fan, S. H. Controlling the flow of light using the inhomogeneous effective gauge field that emerges from dynamic modulation. Phys. Rev. Lett. 111, 203901 (2013). doi: 10.1103/PhysRevLett.111.203901
[31] Schwartz, T. et al. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007). doi: 10.1038/nature05623
[32] Dreisow, F. et al. Bloch-zener oscillations in binary superlattices. Phys. Rev. Lett. 102, 076802 (2009). doi: 10.1103/PhysRevLett.102.076802
[33] Makris, K. G. et al. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008). doi: 10.1103/PhysRevLett.100.103904
[34] Sheinfux, H. H. et al. Recasting Hamiltonians with gauged-driving. 2017 Conference on Lasers and Electro-Optics (CLEO) (OSA, San Jose, 2017).
[35] Rahav, S., Gilary, I. & Fishman, S. Effective Hamiltonians for periodically driven systems. Phys. Rev. A 68, 013820 (2003). doi: 10.1103/PhysRevA.68.013820
[36] Fedorova (Cherpakova), Z. et al. Limits of topological protection under local periodic driving. Light Sci. Appl. 8, 63 (2019). doi: 10.1038/s41377-019-0172-8
[37] Waller, E. H., Renner, M. & von Freymann, G. Active aberration- and point-spread-function control in direct laser writing. Opt. Express 20, 24949–24956 (2012). doi: 10.1364/OE.20.024949