[1] Gabor, D. A new microscopic principle. Nature 161, 777-778 (1948). doi: 10.1038/161777a0
[2] Leith, E. N. & Upatnieks, J. New techniques in wavefront reconstruction. Journal of the Optical Society of America 51, 1469-1473 (1961).
[3] Leith, E. N. & Upatnieks, Reconstructed wavefronts and communication theory. Journal of the Optical Society of America 52, 1123–1130 (1962).
[4] Denisyuk, Y. N. On the reflection of optical properties of an object in a wave field of light scattered by it. Dokl. Akad. Nauk SSSR 144, 1275-1278 (1962).
[5] Schnars, U. & Jüptner, W. Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques. (Berlin: Springer, 2005).
[6] Kim, M. K. Digital holographic microscopy. in Digital Holographic Microscopy (ed Kim, M. K.) (New York: Springer, 2011).
[7] Asundi, A. Digital Holography for MEMS and Microsystem Metrology. (Hoboken: Wiley, 2011).
[8] Benton, S. A. & Bove, V. M. Jr. Holographic Imaging. (Hoboken: John Wiley & Sons, 2008).
[9] Matsushima, K. Introduction to Computer Holography: Creating Computer-Generated Holograms as the Ultimate 3D Image. (Cham: Springer, 2020).
[10] Caulfield, H. J. Handbook of Optical Holography. (New York: Academic Press, 1979).
[11] Claus, D., Iliescu, D. & Rodenburg, J. M. Coherence requirement in digital holography. Applied Optics 52, A326-A335 (2013). doi: 10.1364/AO.52.00A326
[12] Gabor, D. Holography, 1948-1971. Proceedings of the IEEE 60, 655–668 (1972).
[13] Bragg, W. L. & Rogers, G. L. Elimination of the unwanted image in diffraction microscopy. Nature 167, 190-191 (1951). doi: 10.1038/167190a0
[14] Goodman, J. W. & Lawrence, R. W. Digital image formation from electronically detected holograms. Applied Physics Letters 11, 77-79 (1967). doi: 10.1063/1.1755043
[15] Schnars, U. & Jüptner, W. Direct recording of holograms by a CCD target and numerical reconstruction. Applied Optics 33, 179-181 (1994). doi: 10.1364/AO.33.000179
[16] Pedrini, G. & Tiziani, H. J. Short-coherence digital microscopy by use of a lensless holographic imaging system. Applied Optics 41, 4489-4496 (2002). doi: 10.1364/AO.41.004489
[17] Zhang, Y. Z. et al. Application of short-coherence lensless Fourier-transform digital holography in imaging through diffusive medium. Optics Communications 286, 56-59 (2013). doi: 10.1016/j.optcom.2012.07.057
[18] Rosen, J. & Brooker, G. Fresnel incoherent correlation holography (FINCH): a review of research. Advanced Optical Technologies 1, 151-169 (2012).
[19] Cuche, E., Marquet, P. & Depeursinge, C. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Applied Optics 39, 4070-4075 (2000). doi: 10.1364/AO.39.004070
[20] Yamaguchi, I. & Zhang, T. Phase-shifting digital holography. Optics Letters 22, 1268-1270 (1997). doi: 10.1364/OL.22.001268
[21] Meng, X. F. et al. Two-step phase-shifting interferometry and its application in image encryption. Optics Letters 31, 1414-1416 (2006). doi: 10.1364/OL.31.001414
[22] Liu, J. P. & Poon, T. C. Two-step-only quadrature phase-shifting digital holography. Optics Letters 34, 250-252 (2009). doi: 10.1364/OL.34.000250
[23] Zhang, Y. et al. Reconstruction of in-line digital holograms from two intensity measurements. Optics Letters 29, 1787-1789 (2004). doi: 10.1364/OL.29.001787
[24] Situ, G. et al. Generalized in-line digital holographic technique based on intensity measurements at two different planes. Applied Optics 47, 711-717 (2008). doi: 10.1364/AO.47.000711
[25] Das, B. & Yelleswarapu, C. S. Dual plane in-line digital holographic microscopy. Optics Letters 35, 3426-3428 (2010). doi: 10.1364/OL.35.003426
[26] Ryle, J. P., L i, D. & Sheridan, J. T. Dual wavelength digital holographic laplacian reconstruction. Optics Letters 35, 3018-3020 (2010). doi: 10.1364/OL.35.003018
[27] Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237-246 (1972).
[28] Fienup, J. R. Phase retrieval algorithms: a comparison. Applied Optics 21, 2758-2769 (1982). doi: 10.1364/AO.21.002758
[29] Latychevskaia, T. & Fink, H. W. Solution to the twin image problem in holography. Physical Review Letters 98, 233901 (2007). doi: 10.1103/PhysRevLett.98.233901
[30] Latychevskaia, T. & Fink, H. W. Simultaneous reconstruction of phase and amplitude contrast from a single holographic record. Optics Express 17, 10697-10705 (2009). doi: 10.1364/OE.17.010697
[31] Rong, L. et al. Iterative solution to twin image problem in in-line digital holography. Optics and Lasers in Engineering 51, 553-339 (2013). doi: 10.1016/j.optlaseng.2012.12.007
[32] Sotthivirat, S. & Fessler, J. A. Penalized-likelihood image reconstruction for digital holography. Journal of the Optical Society of America A 21, 737-750 (2004). doi: 10.1364/JOSAA.21.000737
[33] Cetin, M., Karl, W. C. & Willsky, A. S. Edge-preserving image reconstruction for coherent imaging applications. Proceedings of the International Conference on Image Processing. Rochester, NY, USA: IEEE, 2002.
[34] Denis, L. et al. Inline hologram reconstruction with sparsity constraints. Optics Letters 34, 3475-3477 (2009). doi: 10.1364/OL.34.003475
[35] Kamau, E. N. et al. Least-squares based inverse reconstruction of in-line digital holograms. Journal of Optics 15, 075716 (2013). doi: 10.1088/2040-8978/15/7/075716
[36] Bourquard, A. et al. A practical inverse-problem approach to digital holographic reconstruction. Optics Express 21, 3417-3433 (2013). doi: 10.1364/OE.21.003417
[37] Schretter, C. et al. Regularized non-convex image reconstruction in digital holographic microscopy. Optics Express 25, 16491-16508 (2017). doi: 10.1364/OE.25.016491
[38] Brady, D. J. et al. Compressive holography. Optics Express 17, 13040-13049 (2009). doi: 10.1364/OE.17.013040
[39] Rivenson, Y., Stern, A. & Javidi, B. Overview of compressive sensing techniques applied in holography[Invited]. Applied Optics 52, A423-A432 (2013). doi: 10.1364/AO.52.00A423
[40] Zhang, W. H. et al. Twin-image-free holography: a compressive sensing approach. Physical Review Letters 121, 093902 (2018). doi: 10.1103/PhysRevLett.121.093902
[41] LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444 (2015). doi: 10.1038/nature14539
[42] Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning. (Cambridge: MIT Press, 2016).
[43] Goda, K., et al. AI boosts photonics and vice versa. APL Photonics 5, 070401 (2020). doi: 10.1063/5.0017902
[44] Jin, K. H. et al. Deep convolutional neural network for inverse problems in imaging. IEEE Transactions on Image Processing 26, 4509-4522 (2017). doi: 10.1109/TIP.2017.2713099
[45] Barbastathis, G., Ozcan, A. & Situ, G. On the use of deep learning for computational imaging. Optica 6, 921-943 (2019). doi: 10.1364/OPTICA.6.000921
[46] Jo, Y. et al. Quantitative phase imaging and artificial intelligence: a review. IEEE Journal of Selected Topics in Quantum Electronics 25, 6800914 (2019).
[47] Ma, W. et al. Deep learning for the design of photonic structures. Nature Photonics 15, 77-90 (2021). doi: 10.1038/s41566-020-0685-y
[48] Wiecha, P. R. et al. Deep learning in nano-photonics: inverse design and beyond. Photonics Research 9, B182-B200 (2021). doi: 10.1364/PRJ.415960
[49] Rivenson, Y., W u, Y. C. & Ozcan, A. Deep learning in holography and coherent imaging. Light: Science & Applications 8, 85 (2019).
[50] Sheridan, J. T. et al. Roadmap on holography. Journal of Optics 22, 123002 (2020). doi: 10.1088/2040-8986/abb3a4
[51] Rivenson, Y. et al. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light: Science & Applications 7, 17141 (2018).
[52] Wang, H., L yu, M. & Situ, G. eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction. Optics Express 26, 22603-22614 (2018). doi: 10.1364/OE.26.022603
[53] Zhang, G. et al. Fast phase retrieval in off-axis digital holographic microscopy through deep learning. Optics Express 26, 19388-19405 (2018). doi: 10.1364/OE.26.019388
[54] Wang, K. Q. et al. Y-Net: a one-to-two deep learning framework for digital holographic reconstruction. Optics Letters 44, 4765-4768 (2019). doi: 10.1364/OL.44.004765
[55] Wang, F. et al. Phase imaging with an untrained neural network. Light: Science & Applications 9, 77 (2020).
[56] Lawrence, H. et al. Phase retrieval with holography and untrained priors: tackling the challenges of low-photon nanoscale imaging. arXiv: 2012.07386 (2021).
[57] Niknam, F., Qazvini, H. & Latifi, H. Holographic optical field recovery using a regularized untrained deep decoder network. Scientific Reports 11, 10903 (2021). doi: 10.1038/s41598-021-90312-5
[58] Nguyen, T. et al. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection. Optics Express 25, 15043-15057 (2017). doi: 10.1364/OE.25.015043
[59] Pitkäaho, T., Manninen, A. & Naughton, T. J. Performance of autofocus capability of deep convolutional neural networks in digital holographic microscopy. Proceedings of the Digital Holography and Three-Dimensional Imaging 2017. JeJu Island Republic of Korea: Optical Society of America, 2017.
[60] Pitkäaho, T., Manninen, A. & Naughton, T. J. Focus prediction in digital holographic microscopy using deep convolutional neural networks. Applied Optics 58-A208 (2019).
[61] Ren, Z. B., Xu, Z. M. & Lam, E. Y. Autofocusing in digital holography using deep learning. Proceedings of SPIE 10499, Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXV. San Francisco, California, United States: SPIE, 2018.
[62] Ren, Z. B., X u, Z. M. & Lam, E. Y. Learning-based nonparametric autofocusing for digital holography. Optica 5, 337-344 (2018). doi: 10.1364/OPTICA.5.000337
[63] Shimobaba, T., Kakue, T. & Ito, T. Convolutional neural network-based regression for depth prediction in digital holography. Proceedings of the 27th International Symposium on Industrial Electronics. Cairns, QLD, Australia: IEEE, 2018.
[64] Huang, L. Z. et al. Holographic image reconstruction with phase recovery and autofocusing using recurrent neural networks. ACS Photonics 8, 1763-1774 (2021). doi: 10.1021/acsphotonics.1c00337
[65] Wu, Y. C. et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery. Optica 5, 704-710 (2018). doi: 10.1364/OPTICA.5.000704
[66] Jeon, W. et al. Speckle noise reduction for digital holographic images using multi-scale convolutional neural networks. Optics Letters 43, 4240-4243 (2018). doi: 10.1364/OL.43.004240
[67] Yin, D. et al. Digital holographic reconstruction based on deep learning framework with unpaired data. IEEE Photonics Journal 12, 3900312 (2020).
[68] Yan, K. T. et al. Fringe pattern de-noising based on deep learning. Optics Communications 437, 148-152 (2019). doi: 10.1016/j.optcom.2018.12.058
[69] Tahon, M., Montresor, S. & Picart, P. Towards reduced CNNs for de-noising phase images corrupted with speckle noise. Photonics 8, 255 (2021). doi: 10.3390/photonics8070255
[70] Ren, Z. B. et al. Fringe pattern improvement and super-resolution using deep learning in digital holography. IEEE Transactions on Industrial Informatics 15, 6179-6186 (2019). doi: 10.1109/TII.2019.2913853
[71] Wang, K. Q. et al. One-step robust deep learning phase unwrapping. Optics Express 27, 15100-15115 (2019). doi: 10.1364/OE.27.015100
[72] Spoorthi, G. E., Gorthi, R. K. S. S. & Gorthi, S. PhaseNet 2.0: phase unwrapping of noisy data based on deep learning approach. IEEE Transactions on Image Processing 29, 4862-4872 (2020). doi: 10.1109/TIP.2020.2977213
[73] Yang, F. S. et al. Robust phase unwrapping via deep image prior for quantitative phase imaging. IEEE Transactions on Image Processing 30, 7025-7037 (2021). doi: 10.1109/TIP.2021.3099956
[74] Horisaki, R., Takagi, R. & Tanida, J. Deep-learning-generated holography. Applied Optics 57, 3859-3863 (2018). doi: 10.1364/AO.57.003859
[75] Eybposh, M. H. et al. DeepCGH: 3D computer-generated holography using deep learning. Optics Express 28, 26636-26650 (2020). doi: 10.1364/OE.399624
[76] Lee, J. et al. Deep neural network for multi-depth hologram generation and its training strategy. Optics Express 28, 27137-27154 (2020). doi: 10.1364/OE.402317
[77] Peng, Y. F. et al. Neural holography with camera-in-the-loop training. ACM Transactions on Graphics 39, 185 (2020).
[78] Shi, L. et al. Towards real-time photorealistic 3D holography with deep neural networks. Nature 591, 234-239 (2021). doi: 10.1038/s41586-020-03152-0
[79] Kang, J. W. et al. Deep-learning-based hologram generation using a generative model. Applied Optics 60, 7391-7399 (2021). doi: 10.1364/AO.427262
[80] Liu, S. C. & Chu, D. P. Deep learning for hologram generation. Optics Express 29, 27373-27395 (2021). doi: 10.1364/OE.418803
[81] Wu, J. C. et al. High-speed computer-generated holography using an autoencoder-based deep neural network. Optics Letters 46, 2908-2911 (2021). doi: 10.1364/OL.425485
[82] Lohmann, A. W. & Paris, D. P. Binary Fraunhofer holograms, generated by computer. Applied Optics 6, 1739-1748 (1967). doi: 10.1364/AO.6.001739
[83] Brown, B. R. & Lohmann, A. W. Computer-generated binary holograms. IBM Journal of Research and Development 13, 160-168 (1969). doi: 10.1147/rd.132.0160
[84] Birch, K. G. & Green, F. J. The application of computer-generated holograms to testing optical elements. Journal of Physics D: Applied Physics 5, 1982-1992 (1972). doi: 10.1088/0022-3727/5/11/306
[85] Osten, W., Baumbach, T. & Jüptner, W. Comparative digital holography. Optics Letters 27, 1764-1766 (2002). doi: 10.1364/OL.27.001764
[86] Pruss, C., et al. Computer-generated holograms in interferometric testing. Optical Engineering 43, 2534-2540 (2004). doi: 10.1117/1.1804544
[87] Wyrowski, F. Diffractive optical elements: iterative calculation of quantized, blazed phase structures. Journal of the Optical Society of America A 7, 961-969 (1990). doi: 10.1364/JOSAA.7.000961
[88] Slinger, C., Cameron, C. & Stanley, M. Computer-generated holography as a generic display technology. Computer 38, 46-53 (2005).
[89] Bove, V. M. Jr. Display holography’s digital second act. Proceedings of the IEEE 100, 918-928 (2012). doi: 10.1109/JPROC.2011.2182071
[90] Lucente, M. Interactive computation of holograms using a look-up table. Journal of Electronic Imaging 2, 28-34 (1993). doi: 10.1117/12.133376
[91] Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America 79, 2554-2558 (1982). doi: 10.1073/pnas.79.8.2554
[92] White, H. J. & Wright, W. A. Holographic implementation of a hopfield model with discrete weightings. Applied Optics 27, 331-338 (1988). doi: 10.1364/AO.27.000331
[93] Psaltis, D. et al. Holography in artificial neural networks. Nature 343, 325-330 (1990). doi: 10.1038/343325a0
[94] Hsu, K. Y., L i, H. Y. & Psaltis, D. Holographic implementation of a fully connected neural network. Proceedings of the IEEE 78, 1637-1645 (1990). doi: 10.1109/5.58357
[95] Keller, P. E. & Gmitro, A. F. Design and analysis of fixed planar holographic interconnects for optical neural networks. Applied Optics 31, 5517-5526 (1992). doi: 10.1364/AO.31.005517
[96] Jutamulia, S. & Yu, F. T. S. Overview of hybrid optical neural networks. Optics & Laser Technology 28, 59-72 (1996).
[97] Kaikhah, K. & Loochan, F. Computer generated holograms for optical neural networks. Applied Intelligence 14, 145-160 (2001). doi: 10.1023/A:1008314025737
[98] Lin, X., et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004-1008 (2018). doi: 10.1126/science.aat8084
[99] Yan, T., et al. Fourier-space diffractive deep neural network. Physical Review Letters 123, 023901 (2019). doi: 10.1103/PhysRevLett.123.023901
[100] Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe Nevada: Curran Associates Inc., 2012, 1097-1105.
[101] He, K. M. et al. Deep residual learning for image recognition. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016.
[102] He, K. M. et al. Identity mappings in deep residual networks. Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands: Springer, 2016.
[103] Bergstra, J. & Bengio, Y. Random search for hyper-parameter optimization. Journal of Machine Learning Research 13, 281-305 (2012).
[104] Lee, S. et al. Background information of deep learning for structural engineering. Archives of Computational Methods in Engineering 25, 121-129 (2018). doi: 10.1007/s11831-017-9237-0
[105] Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Networks 4, 251-257 (1991). doi: 10.1016/0893-6080(91)90009-T
[106] Patterson, J. & Gibson, A. Deep Learning: A Practitioner's Approach. (Sebastopol, CA: O'reilly, 2017).
[107] Hansen, C. Activation functions explained -GELU, SELU, ELU, ReLU and more. at https://mlfromscratch.com/activation-functions-explained/.
[108] Lei, N. et al. Geometric understanding of deep learning. arXiv: 1805.10451 (2018).
[109] Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 322, 533-536 (1986). doi: 10.1038/322533a0
[110] Ionescu, C., Vantzos, O. & Sminchisescu, C. Matrix backpropagation for deep networks with structured layers. Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015, 2965-2973.
[111] Rojas, R. Neural Networks: a Systematic Introduction. (Berlin, Heidelberg: Springer, 1996).
[112] Yuan, Y. X. Step-sizes for the gradient method. AMS/IP Studies in Advanced Mathematics 42, 785-796 (2008).
[113] Kingma, D. & Ba, J. Adam: a method for stochastic optimization. arXiv: 1412: 6980 (2017).
[114] Zhao, H., et al. Loss functions for image restoration with neural networks. IEEE Transactions on Computational Imaging 3, 47-57 (2017). doi: 10.1109/TCI.2016.2644865
[115] Menard, S. Coefficients of determination for multiple logistic regression analysis. The American Statistician 54, 17-24 (2000).
[116] Xue, Y. J., et al. Reliable deep-learning-based phase imaging with uncertainty quantification. Optica 6, 618-629 (2019). doi: 10.1364/OPTICA.6.000618
[117] Lyu, M. et al. Deep-learning-based ghost imaging. Scientific Reports 7, 17865 (2017). doi: 10.1038/s41598-017-18171-7
[118] Lyu, M. et al. Exploit imaging through opaque wall via deep learning. arXiv: 1708.07881 (2017).
[119] Lyu, M. et al. Learning-based lensless imaging through optically thick scattering media. Advanced Photonics 1, 036002 (2019).
[120] Hubel, D. H. & Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology 195, 215-243 (1968). doi: 10.1113/jphysiol.1968.sp008455
[121] Goodman, J. W. Introduction to Fourier Optics. (Englewood: Roberts & Company, 2004).
[122] Voelz, D. G. Computational Fourier Optics: A MATLAB Tutorial. (Bellingham: SPIE, 2011).
[123] Scherer, D., Müller, A. C. & Behnke, S. Evaluation of pooling operations in convolutional architectures for object recognition. Proceedings of the 20th International Conference on Artificial Neural Networks. Thessaloniki, Greece: Springer, 2010, 92-101.
[124] Zeiler, M. D. et al. Deconvolutional networks. Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE, 2010.
[125] Mohan, R. Deep deconvolutional networks for scene parsing. arXiv: 1411.4101 (2014).
[126] Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. arXiv: 1505.04597 (2015).
[127] Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Chia Laguna Resort, Sardinia, Italy: PMLR, 2010.
[128] Shimobaba, T. et al. Digital holographic particle volume reconstruction using a deep neural network. Applied Optics 58, 1900-1906 (2019). doi: 10.1364/AO.58.001900
[129] Zhang, Z. D. et al. Holo-UNet: hologram-to-hologram neural network restoration for high fidelity low light quantitative phase imaging of live cells. Biomedical Optics Express 11, 5478-5487 (2020). doi: 10.1364/BOE.395302
[130] Chang, T. et al. Calibration-free quantitative phase imaging using data-driven aberration modeling. Optics Express 28, 34835-34847 (2020). doi: 10.1364/OE.412009
[131] Wang, F. et al. Learning from simulation: an end-to-end deep-learning approach for computational ghost imaging. Optics Express 27, 25560-25572 (2019). doi: 10.1364/OE.27.025560
[132] Zheng, S. S. et al. Incoherent imaging through highly nonstatic and optically thick turbid media based on neural network. Photonics Research 9, B220-B228 (2021). doi: 10.1364/PRJ.416246
[133] Zheng, S. S. et al. Non-line-of-sight imaging under white-light illumination: a two-step deep learning approach. Optics Express 29, 40091-40105 (2021). doi: 10.1364/OE.443127
[134] Zhou, Z. W. et al. Unet++: a nested U-net architecture for medical image segmentation. Proceedings of the Deep Learning in Medical Image Analysis - and - Multimodal Learning for Clinical Decision Support - 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018. Granada, Spain: Springer, 2018.
[135] Zhang, X. Y., Wa ng, F. & Situ, G. BlindNet: an untrained learning approach toward computational imaging with model uncertainty. Journal of Physics D: Applied Physics 55, 034001 (2022). doi: 10.1088/1361-6463/ac2ad4
[136] Goodfellow, I. J. et al. Generative adversarial networks. Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada, 2014.
[137] Moon, I. et al. Noise-free quantitative phase imaging in Gabor holography with conditional generative adversarial network. Optics Express 28, 26284-26301 (2020). doi: 10.1364/OE.398528
[138] Zhang, Y. H. et al. PhaseGAN: a deep-learning phase-retrieval approach for unpaired datasets. Optics Express 29, 19593-19604 (2021). doi: 10.1364/OE.423222
[139] Wu, Y. C. et al. Bright-field holography: cross-modality deep learning enables snapshot 3D imaging with bright-field contrast using a single hologram. Light: Science & Applications 8, 25 (2019).
[140] Mangal, J. et al. Unsupervised organization of cervical cells using bright-field and single-shot digital holographic microscopy. Journal of Biophotonics 12, e201800409 (2019).
[141] Salimans, T. et al. Improved techniques for training GANs. Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: Curran Associates Inc., 2016.
[142] Zhu, J. Y. et al. Unpaired image-to-image translation using cycle-consistent adversarial networks. Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017.
[143] Isola, P. et al. Image-to-image translation with conditional adversarial networks. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017.
[144] Nehme, E. et al. Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica 5, 458-464 (2018). doi: 10.1364/OPTICA.5.000458
[145] Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nature Methods 15, 1090-1097 (2018). doi: 10.1038/s41592-018-0216-7
[146] Matlock, A. & Tian, L. Physical model simulator-trained neural network for computational 3D phase imaging of multiple-scattering samples. arXiv: 2103.15795 (2021).
[147] LeCun, Y. et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86, 2278-2324 (1998). doi: 10.1109/5.726791
[148] Huang, G. B. et al. Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments. (University of Massachusetts, 2007).
[149] Lee, C. H. et al. MaskGAN: towards diverse and interactive facial image manipulation. Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA: IEEE, 2020.
[150] Neyshabur, B. et al. Exploring generalization in deep learning. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, CA, USA: Curran Associates Inc., 2017.
[151] Lempitsky, V., Vedaldi, A. & Ulyanov, D. Deep image prior. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018.
[152] Bostan, E. et al. Deep phase decoder: self-calibrating phase microscopy with an untrained deep neural network. Optica 7, 559-562 (2020). doi: 10.1364/OPTICA.389314
[153] Zhou, K. C. & Horstmeyer, R. Diffraction tomography with a deep image prior. Optics Express 28, 12872-12896 (2020). doi: 10.1364/OE.379200
[154] Yang, D. Y. et al. Dynamic coherent diffractive imaging with a physics-driven untrained learning method. Optics Express 29, 31426-31442 (2021). doi: 10.1364/OE.433507
[155] Wang, F. et al. Far-field super-resolution ghost imaging with a deep neural network constraint. Light: Science & Applications 11, 1 (2022).
[156] Bengio, Y. Learning deep architectures for AI. Foundations and Trends in Machine Learning 2, 1-127 (2009). doi: 10.1561/2200000006
[157] Sjöberg, J. et al. Nonlinear black-box modeling in system identification: a unified overview. Automatica 31, 1691-1724 (1995). doi: 10.1016/0005-1098(95)00120-8
[158] Tzeng, F. Y. & Ma, K. L. Opening the black box -data driven visualization of neural networks. Proceedings of the VIS 05. IEEE Visualization, 2005. Minneapolis, MN, USA: IEEE, 2005.
[159] Karpatne, A., et al. Theory-guided data science: a new paradigm for scientific discovery from data. IEEE Transactions on Knowledge and Data Engineering 29, 2318-2331 (2017). doi: 10.1109/TKDE.2017.2720168
[160] Beucler, T. et al. Enforcing analytic constraints in neural networks emulating physical systems. Physical Review Letters 126, 098302 (2021). doi: 10.1103/PhysRevLett.126.098302
[161] Buhrmester, V., Münch, D. & Arens, M. Analysis of explainers of black box deep neural networks for computer vision: a survey. Machine Learning and Knowledge Extraction 3, 966-989 (2021). doi: 10.3390/make3040048
[162] Arrieta, A. B. et al. Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion 58, 82-115 (2020). doi: 10.1016/j.inffus.2019.12.012
[163] Willard, J. et al. Integrating scientific knowledge with machine learning for engineering and environmental systems. arXiv: 2003.04919v5 (2021).
[164] Roscher, R. et al. Explainable machine learning for scientific insights and discoveries. IEEE Access 8, 42200-42216 (2020). doi: 10.1109/ACCESS.2020.2976199
[165] Wijesinghe, P. & Dholakia, K. Emergent physics-informed design of deep learning for microscopy. Journal of Physics: Photonics 3, 21003 (2021). doi: 10.1088/2515-7647/abf02c
[166] Ba, Y. H., Zhao, G. Y. & Kadambi, A. Blending diverse physical priors with neural networks. arXiv: 1910.00201 (2019).
[167] Goy, A. et al. Low photon count phase retrieval using deep learning. Physical Review Letters 121, 243902 (2018). doi: 10.1103/PhysRevLett.121.243902
[168] Zeng, T. J. & Lam, E. Y. Model-based network architecture for image reconstruction in lensless imaging. Proceedings of SPIE 11551, Holography, Diffractive Optics, and Applications X. SPIE, 2020.
[169] Iten, R. et al. Discovering physical concepts with neural networks. Physical Review Letters 124, 010508 (2020). doi: 10.1103/PhysRevLett.124.010508
[170] Takeda, M. & Goodman, J. W. Neural networks for computation: number representations and programming complexity. Applied Optics 25, 3033-3046 (1986). doi: 10.1364/AO.25.003033
[171] Takeda, M. Phase unwrapping by neural network. Proceedings of the FRINGE'93. Akademie Verlag, 1993, 136-141.
[172] Kreis, T. M., Biedermann, R. & Jüptner, W. P. O. Evaluation of holographic interference patterns by artificial neural networks. Proceedings of SPIE 2544, Interferometry VⅡ: Techniques and Analysis. San Diego, CA, United States: SPIE, 1995, 11-24.
[173] Kreis, T., Jüptner, W. & Biedermann, R. Neural network approach to holographic nondestructive testing. Applied Optics 34, 1407-1415 (1995). doi: 10.1364/AO.34.001407
[174] Frauel, Y. & Javidi, B. Neural network for three-dimensional object recognition based on digital holography. Optics Letters 26, 1478-1480 (2001). doi: 10.1364/OL.26.001478
[175] Situ, G. & Sheridan, J. T. Holography: an interpretation from the phase-space point of view. Optics Letters 32, 3492-3494 (2007). doi: 10.1364/OL.32.003492
[176] Stern, A. & Javidi, B. Space-bandwidth conditions for efficient phase-shifting digital holographic microscopy. Journal of the Optical Society of America A 25, 736-741 (2008). doi: 10.1364/JOSAA.25.000736
[177] Claus, D., Iliescu, D. & Bryanston-Cross, P. Quantitative space-bandwidth product analysis in digital holography. Applied Optics 50, H116-H127 (2011). doi: 10.1364/AO.50.00H116
[178] Rogers, G. L. In-line soft-x-ray holography: the unwanted image. Optics Letters 19, 67 (1994). doi: 10.1364/OL.19.000067
[179] Xiao, T. Q. et al. Digital image decoding for in-line X-ray holography using two holograms. Journal of Modern Optics 45, 343-353 (1998). doi: 10.1080/09500349808231693
[180] Tonomura, A. Applications of electron holography. Reviews of Modern Physics 59, 639-669 (1987). doi: 10.1103/RevModPhys.59.639
[181] Tegze, M. & Faigel, G. X-ray holography with atomic resolution. Nature 380, 49-51 (1996). doi: 10.1038/380049a0
[182] Korecki, P., Korecki, J. & Ślȩzak, T. Atomic resolution $ \gamma $-ray holography using the Mössbauer effect. Physical Review Letters 79, 3518-3521 (1997). doi: 10.1103/PhysRevLett.79.3518
[183] Zhang, J. Y. et al. Phase-shifting lensless Fourier-transform holography with a Chinese Taiji lens. Optics Letters 43, 4085-4087 (2018). doi: 10.1364/OL.43.004085
[184] Zhang, S. M. et al. Phase-shifting radial-shearing digital holography with Greek-ladder zone plates. Optics Letters 43, 5575-5578 (2018). doi: 10.1364/OL.43.005575
[185] Liu, G. & Scott, P. D. Phase retrieval and twin-image elimination for in-line Fresnel holograms. Journal of the Optical Society of America A 4, 159-165 (1987). doi: 10.1364/JOSAA.4.000159
[186] Teague, M. R. Deterministic phase retrieval: a Green's function solution. Journal of the Optical Society of America 73, 1434-1441 (1983). doi: 10.1364/JOSA.73.001434
[187] Barton, J. J. Removing multiple scattering and twin images from holographic images. Physical Review Letters 67, 3106-3109 (1991). doi: 10.1103/PhysRevLett.67.3106
[188] Nugent, K. A. Twin-image elimination in Gabor holography. Optics Communications 78, 293-299 (1990). doi: 10.1016/0030-4018(90)90364-Y
[189] Tiller, J. B. et al. The holographic twin image problem: a deterministic phase solution. Optics Communications 183, 7-14 (2000). doi: 10.1016/S0030-4018(00)00852-X
[190] Bleloch, A. L., Howie, A. & James, E. M. Amplitude recovery in Fresnel projection microscopy. Applied Surface Science 111, 180-184 (1997). doi: 10.1016/S0169-4332(96)00707-6
[191] Levi, A. & Stark, H. Image restoration by the method of generalized projections with application to restoration from magnitude. Journal of the Optical Society of America A 1, 932-943 (1984). doi: 10.1364/JOSAA.1.000932
[192] Shechtman, Y. et al. Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Processing Magazine 32, 87-109 (2015). doi: 10.1109/MSP.2014.2352673
[193] Fournier, C. et al. Inverse problem approaches for digital hologram reconstruction. Proceedings of SPIE 8043, Three-Dimensional Imaging, Visualization, and Display 2011. Orlando, Florida, United States: SPIE, 2011.
[194] McCann, M. T., J in, K. H. & Unser, M. Convolutional neural networks for inverse problems in imaging: a review. IEEE Signal Processing Magazine 34, 85-95 (2017).
[195] Misell, D. L. An examination of an iterative method for the solution of the phase problem in optics and electron optics: I. test calculations. Journal of Physics D: Applied Physics 6, 2200-2216 (1973). doi: 10.1088/0022-3727/6/18/305
[196] Greenbaum, A. & Ozcan, A. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy. Optics Express 20, 3129-3143 (2012). doi: 10.1364/OE.20.003129
[197] Zhang, J. C. et al. Phase unwrapping in optical metrology via denoised and convolutional segmentation networks. Optics Express 27, 14903-14912 (2019). doi: 10.1364/OE.27.014903
[198] Zhang, T. et al. Rapid and robust two-dimensional phase unwrapping via deep learning. Optics Express 27, 23173-23185 (2019). doi: 10.1364/OE.27.023173
[199] Dardikman-Yoffe, G. et al. PhUn-Net: ready-to-use neural network for unwrapping quantitative phase images of biological cells. Biomedical Optics Express 11, 1107-1121 (2020). doi: 10.1364/BOE.379533
[200] Wu, C. C. et al. Phase unwrapping based on a residual en-decoder network for phase images in Fourier domain Doppler optical coherence tomography. Biomedical Optics Express 11, 1760-1771 (2020). doi: 10.1364/BOE.386101
[201] Lyu, M. et al. Fast autofocusing in digital holography using the magnitude differential. Applied Optics 56, F152-F157 (2017). doi: 10.1364/AO.56.00F152
[202] Bian, Y. X. et al. Optical refractometry using lensless holography and autofocusing. Optics Express 26, 29614-29628 (2018). doi: 10.1364/OE.26.029614
[203] Zhang, Y. B. et al. Edge sparsity criterion for robust holographic autofocusing. Optics Letters 42, 3824-3827 (2017). doi: 10.1364/OL.42.003824
[204] Jaferzadeh, K. et al. No-search focus prediction at the single cell level in digital holographic imaging with deep convolutional neural network. Biomedical Optics Express 10, 4276-4289 (2019). doi: 10.1364/BOE.10.004276
[205] Xiao, W. et al. Sensing morphogenesis of bone cells under microfluidic shear stress by holographic microscopy and automatic aberration compensation with deep learning. Lab on A Chip 21, 1385-1394 (2021). doi: 10.1039/D0LC01113D
[206] Gopinathan, U., Pedrini, G. & Osten, W. Coherence effects in digital in-line holographic microscopy. Journal of the Optical Society of America A 25, 2459-2466 (2008). doi: 10.1364/JOSAA.25.002459
[207] Dainty, J. C. et al. Laser Speckle and Related Phenomena. (Berlin, Heidelberg: Springer 1975).
[208] Bianco, V. et al. Strategies for reducing speckle noise in digital holography. Light: Science & Applications 7, 48 (2018).
[209] Lehtinen, J. et al. Noise2Noise: learning image restoration without clean data. Proceedings of the 35th International Conference on Machine Learning. Stockholm, Sweden: PMLR, 2018.
[210] Yin, D. et al. Speckle noise reduction in coherent imaging based on deep learning without clean data. Optics and Lasers in Engineering 133, 106151 (2020). doi: 10.1016/j.optlaseng.2020.106151
[211] Blinder, D. et al. Signal processing challenges for digital holographic video display systems. Signal Processing: Image Communication 70, 114-130 (2019). doi: 10.1016/j.image.2018.09.014
[212] Zhang, F. et al. An approach to increase efficiency of DOE based pupil shaping technique for off-axis illumination in optical lithography. Optics Express 23, 4482-4493 (2015). doi: 10.1364/OE.23.004482
[213] He, Z. H. et al. Progress in virtual reality and augmented reality based on holographic display. Applied Optics 58, A74-A81 (2019). doi: 10.1364/AO.58.000A74
[214] Shimobaba, T. et al. Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display. Optics Express 18, 19504-19509 (2010). doi: 10.1364/OE.18.019504
[215] Ito, T. et al. Special-purpose computer HORN-5 for a real-time electroholography. Optics Express 13, 1923-1932 (2005). doi: 10.1364/OPEX.13.001923
[216] Goi, H., Komuro, K. & Nomura, T. Deep-learning-based binary hologram. Applied Optics 59, 7103-7108 (2020). doi: 10.1364/AO.393500
[217] Park, D. Y. & Park, J. H. Hologram conversion for speckle free reconstruction using light field extraction and deep learning. Optics Express 28, 5393-5409 (2020). doi: 10.1364/OE.384888
[218] Ren, H. R. et al. Three-dimensional vectorial holography based on machine learning inverse design. Science Advances 6, eaaz4261 (2020). doi: 10.1126/sciadv.aaz4261
[219] Goodman, J. W. et al. Optical interconnections for VLSI systems. Proceedings of the IEEE 72, 850-866 (1984). doi: 10.1109/PROC.1984.12943
[220] Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39-47 (2020). doi: 10.1038/s41586-020-2973-6
[221] Luo, X. H. et al. Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible. arXiv: 2107.07873 (2021).
[222] Zhou, T. K. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nature Photonics 15, 367-373 (2021). doi: 10.1038/s41566-021-00796-w
[223] Zhou, T. K. et al. In situ optical backpropagation training of diffractive optical neural networks. Photonics Research 8, 6000940 (2020).
[224] Xiao, Y. L. et al. Unitary learning for diffractive deep neural network. Optics and Lasers in Engineering 139, 106499 (2021). doi: 10.1016/j.optlaseng.2020.106499
[225] Xiao, Y. L. et al. Optical random phase dropout in a diffractive deep neural network. Optics Letters 46, 5260-5263 (2021). doi: 10.1364/OL.428761
[226] Qian, C. et al. Performing optical logic operations by a diffractive neural network. Light: Science & Applications 9, 59 (2020).
[227] Wang, P. P. et al. Orbital angular momentum mode logical operation using optical diffractive neural network. Photonics Research 9, 2116-2124 (2021). doi: 10.1364/PRJ.432919
[228] Kulce, O. et al. All-optical information-processing capacity of diffractive surfaces. Light: Science & Applications 10, 25 (2021).
[229] Huang, Z. B. et al. All-optical signal processing of vortex beams with diffractive deep neural networks. Physical Review Applied 15, 014037 (2021). doi: 10.1103/PhysRevApplied.15.014037
[230] Rahman, S. S. & Ozcan, A. Computer-free, all-optical reconstruction of holograms using diffractive networks. arXiv: 2107.08177 (2021).
[231] Veli, M. et al. Terahertz pulse shaping using diffractive surfaces. Nature Communications 12, 37 (2021). doi: 10.1038/s41467-020-20268-z
[232] Li, J. X. et al. Spectrally encoded single-pixel machine vision using diffractive networks. Science Advances 7, eabd7690 (2021). doi: 10.1126/sciadv.abd7690
[233] Wang, F. et al. Single-pixel imaging using physics enhanced deep learning. Photonics Research 10, 104-110 (2022). doi: 10.1364/PRJ.440123
[234] Cai, X. D. et al. Dynamically controlling terahertz wavefronts with cascaded metasurfaces. Advanced Photonics 3, 036003 (2021).
[235] Lobo, J. L. et al. Spiking Neural Networks and online learning: an overview and perspectives. Neural Networks 121, 88-100 (2020). doi: 10.1016/j.neunet.2019.09.004