[1] |
Gabor, D. A new microscopic principle. Nature 161, 777-778 (1948). doi: 10.1038/161777a0 |
[2] |
Leith, E. N. & Upatnieks, J. New techniques in wavefront reconstruction. Journal of the Optical Society of America 51, 1469-1473 (1961). |
[3] |
Leith, E. N. & Upatnieks, Reconstructed wavefronts and communication theory. Journal of the Optical Society of America 52, 1123–1130 (1962). |
[4] |
Denisyuk, Y. N. On the reflection of optical properties of an object in a wave field of light scattered by it. Dokl. Akad. Nauk SSSR 144, 1275-1278 (1962). |
[5] |
Schnars, U. & Jüptner, W. Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques. (Berlin: Springer, 2005). |
[6] |
Kim, M. K. Digital holographic microscopy. in Digital Holographic Microscopy (ed Kim, M. K.) (New York: Springer, 2011). |
[7] |
Asundi, A. Digital Holography for MEMS and Microsystem Metrology. (Hoboken: Wiley, 2011). |
[8] |
Benton, S. A. & Bove, V. M. Jr. Holographic Imaging. (Hoboken: John Wiley & Sons, 2008). |
[9] |
Matsushima, K. Introduction to Computer Holography: Creating Computer-Generated Holograms as the Ultimate 3D Image. (Cham: Springer, 2020). |
[10] |
Caulfield, H. J. Handbook of Optical Holography. (New York: Academic Press, 1979). |
[11] |
Claus, D., Iliescu, D. & Rodenburg, J. M. Coherence requirement in digital holography. Applied Optics 52, A326-A335 (2013). doi: 10.1364/AO.52.00A326 |
[12] |
Gabor, D. Holography, 1948-1971. Proceedings of the IEEE 60, 655–668 (1972). |
[13] |
Bragg, W. L. & Rogers, G. L. Elimination of the unwanted image in diffraction microscopy. Nature 167, 190-191 (1951). doi: 10.1038/167190a0 |
[14] |
Goodman, J. W. & Lawrence, R. W. Digital image formation from electronically detected holograms. Applied Physics Letters 11, 77-79 (1967). doi: 10.1063/1.1755043 |
[15] |
Schnars, U. & Jüptner, W. Direct recording of holograms by a CCD target and numerical reconstruction. Applied Optics 33, 179-181 (1994). doi: 10.1364/AO.33.000179 |
[16] |
Pedrini, G. & Tiziani, H. J. Short-coherence digital microscopy by use of a lensless holographic imaging system. Applied Optics 41, 4489-4496 (2002). doi: 10.1364/AO.41.004489 |
[17] |
Zhang, Y. Z. et al. Application of short-coherence lensless Fourier-transform digital holography in imaging through diffusive medium. Optics Communications 286, 56-59 (2013). doi: 10.1016/j.optcom.2012.07.057 |
[18] |
Rosen, J. & Brooker, G. Fresnel incoherent correlation holography (FINCH): a review of research. Advanced Optical Technologies 1, 151-169 (2012). |
[19] |
Cuche, E., Marquet, P. & Depeursinge, C. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Applied Optics 39, 4070-4075 (2000). doi: 10.1364/AO.39.004070 |
[20] |
Yamaguchi, I. & Zhang, T. Phase-shifting digital holography. Optics Letters 22, 1268-1270 (1997). doi: 10.1364/OL.22.001268 |
[21] |
Meng, X. F. et al. Two-step phase-shifting interferometry and its application in image encryption. Optics Letters 31, 1414-1416 (2006). doi: 10.1364/OL.31.001414 |
[22] |
Liu, J. P. & Poon, T. C. Two-step-only quadrature phase-shifting digital holography. Optics Letters 34, 250-252 (2009). doi: 10.1364/OL.34.000250 |
[23] |
Zhang, Y. et al. Reconstruction of in-line digital holograms from two intensity measurements. Optics Letters 29, 1787-1789 (2004). doi: 10.1364/OL.29.001787 |
[24] |
Situ, G. et al. Generalized in-line digital holographic technique based on intensity measurements at two different planes. Applied Optics 47, 711-717 (2008). doi: 10.1364/AO.47.000711 |
[25] |
Das, B. & Yelleswarapu, C. S. Dual plane in-line digital holographic microscopy. Optics Letters 35, 3426-3428 (2010). doi: 10.1364/OL.35.003426 |
[26] |
Ryle, J. P., L i, D. & Sheridan, J. T. Dual wavelength digital holographic laplacian reconstruction. Optics Letters 35, 3018-3020 (2010). doi: 10.1364/OL.35.003018 |
[27] |
Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237-246 (1972). |
[28] |
Fienup, J. R. Phase retrieval algorithms: a comparison. Applied Optics 21, 2758-2769 (1982). doi: 10.1364/AO.21.002758 |
[29] |
Latychevskaia, T. & Fink, H. W. Solution to the twin image problem in holography. Physical Review Letters 98, 233901 (2007). doi: 10.1103/PhysRevLett.98.233901 |
[30] |
Latychevskaia, T. & Fink, H. W. Simultaneous reconstruction of phase and amplitude contrast from a single holographic record. Optics Express 17, 10697-10705 (2009). doi: 10.1364/OE.17.010697 |
[31] |
Rong, L. et al. Iterative solution to twin image problem in in-line digital holography. Optics and Lasers in Engineering 51, 553-339 (2013). doi: 10.1016/j.optlaseng.2012.12.007 |
[32] |
Sotthivirat, S. & Fessler, J. A. Penalized-likelihood image reconstruction for digital holography. Journal of the Optical Society of America A 21, 737-750 (2004). doi: 10.1364/JOSAA.21.000737 |
[33] |
Cetin, M., Karl, W. C. & Willsky, A. S. Edge-preserving image reconstruction for coherent imaging applications. Proceedings of the International Conference on Image Processing. Rochester, NY, USA: IEEE, 2002. |
[34] |
Denis, L. et al. Inline hologram reconstruction with sparsity constraints. Optics Letters 34, 3475-3477 (2009). doi: 10.1364/OL.34.003475 |
[35] |
Kamau, E. N. et al. Least-squares based inverse reconstruction of in-line digital holograms. Journal of Optics 15, 075716 (2013). doi: 10.1088/2040-8978/15/7/075716 |
[36] |
Bourquard, A. et al. A practical inverse-problem approach to digital holographic reconstruction. Optics Express 21, 3417-3433 (2013). doi: 10.1364/OE.21.003417 |
[37] |
Schretter, C. et al. Regularized non-convex image reconstruction in digital holographic microscopy. Optics Express 25, 16491-16508 (2017). doi: 10.1364/OE.25.016491 |
[38] |
Brady, D. J. et al. Compressive holography. Optics Express 17, 13040-13049 (2009). doi: 10.1364/OE.17.013040 |
[39] |
Rivenson, Y., Stern, A. & Javidi, B. Overview of compressive sensing techniques applied in holography[Invited]. Applied Optics 52, A423-A432 (2013). doi: 10.1364/AO.52.00A423 |
[40] |
Zhang, W. H. et al. Twin-image-free holography: a compressive sensing approach. Physical Review Letters 121, 093902 (2018). doi: 10.1103/PhysRevLett.121.093902 |
[41] |
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444 (2015). doi: 10.1038/nature14539 |
[42] |
Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning. (Cambridge: MIT Press, 2016). |
[43] |
Goda, K., et al. AI boosts photonics and vice versa. APL Photonics 5, 070401 (2020). doi: 10.1063/5.0017902 |
[44] |
Jin, K. H. et al. Deep convolutional neural network for inverse problems in imaging. IEEE Transactions on Image Processing 26, 4509-4522 (2017). doi: 10.1109/TIP.2017.2713099 |
[45] |
Barbastathis, G., Ozcan, A. & Situ, G. On the use of deep learning for computational imaging. Optica 6, 921-943 (2019). doi: 10.1364/OPTICA.6.000921 |
[46] |
Jo, Y. et al. Quantitative phase imaging and artificial intelligence: a review. IEEE Journal of Selected Topics in Quantum Electronics 25, 6800914 (2019). |
[47] |
Ma, W. et al. Deep learning for the design of photonic structures. Nature Photonics 15, 77-90 (2021). doi: 10.1038/s41566-020-0685-y |
[48] |
Wiecha, P. R. et al. Deep learning in nano-photonics: inverse design and beyond. Photonics Research 9, B182-B200 (2021). doi: 10.1364/PRJ.415960 |
[49] |
Rivenson, Y., W u, Y. C. & Ozcan, A. Deep learning in holography and coherent imaging. Light: Science & Applications 8, 85 (2019). |
[50] |
Sheridan, J. T. et al. Roadmap on holography. Journal of Optics 22, 123002 (2020). doi: 10.1088/2040-8986/abb3a4 |
[51] |
Rivenson, Y. et al. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light: Science & Applications 7, 17141 (2018). |
[52] |
Wang, H., L yu, M. & Situ, G. eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction. Optics Express 26, 22603-22614 (2018). doi: 10.1364/OE.26.022603 |
[53] |
Zhang, G. et al. Fast phase retrieval in off-axis digital holographic microscopy through deep learning. Optics Express 26, 19388-19405 (2018). doi: 10.1364/OE.26.019388 |
[54] |
Wang, K. Q. et al. Y-Net: a one-to-two deep learning framework for digital holographic reconstruction. Optics Letters 44, 4765-4768 (2019). doi: 10.1364/OL.44.004765 |
[55] |
Wang, F. et al. Phase imaging with an untrained neural network. Light: Science & Applications 9, 77 (2020). |
[56] |
Lawrence, H. et al. Phase retrieval with holography and untrained priors: tackling the challenges of low-photon nanoscale imaging. arXiv: 2012.07386 (2021). |
[57] |
Niknam, F., Qazvini, H. & Latifi, H. Holographic optical field recovery using a regularized untrained deep decoder network. Scientific Reports 11, 10903 (2021). doi: 10.1038/s41598-021-90312-5 |
[58] |
Nguyen, T. et al. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection. Optics Express 25, 15043-15057 (2017). doi: 10.1364/OE.25.015043 |
[59] |
Pitkäaho, T., Manninen, A. & Naughton, T. J. Performance of autofocus capability of deep convolutional neural networks in digital holographic microscopy. Proceedings of the Digital Holography and Three-Dimensional Imaging 2017. JeJu Island Republic of Korea: Optical Society of America, 2017. |
[60] |
Pitkäaho, T., Manninen, A. & Naughton, T. J. Focus prediction in digital holographic microscopy using deep convolutional neural networks. Applied Optics 58-A208 (2019). |
[61] |
Ren, Z. B., Xu, Z. M. & Lam, E. Y. Autofocusing in digital holography using deep learning. Proceedings of SPIE 10499, Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXV. San Francisco, California, United States: SPIE, 2018. |
[62] |
Ren, Z. B., X u, Z. M. & Lam, E. Y. Learning-based nonparametric autofocusing for digital holography. Optica 5, 337-344 (2018). doi: 10.1364/OPTICA.5.000337 |
[63] |
Shimobaba, T., Kakue, T. & Ito, T. Convolutional neural network-based regression for depth prediction in digital holography. Proceedings of the 27th International Symposium on Industrial Electronics. Cairns, QLD, Australia: IEEE, 2018. |
[64] |
Huang, L. Z. et al. Holographic image reconstruction with phase recovery and autofocusing using recurrent neural networks. ACS Photonics 8, 1763-1774 (2021). doi: 10.1021/acsphotonics.1c00337 |
[65] |
Wu, Y. C. et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery. Optica 5, 704-710 (2018). doi: 10.1364/OPTICA.5.000704 |
[66] |
Jeon, W. et al. Speckle noise reduction for digital holographic images using multi-scale convolutional neural networks. Optics Letters 43, 4240-4243 (2018). doi: 10.1364/OL.43.004240 |
[67] |
Yin, D. et al. Digital holographic reconstruction based on deep learning framework with unpaired data. IEEE Photonics Journal 12, 3900312 (2020). |
[68] |
Yan, K. T. et al. Fringe pattern de-noising based on deep learning. Optics Communications 437, 148-152 (2019). doi: 10.1016/j.optcom.2018.12.058 |
[69] |
Tahon, M., Montresor, S. & Picart, P. Towards reduced CNNs for de-noising phase images corrupted with speckle noise. Photonics 8, 255 (2021). doi: 10.3390/photonics8070255 |
[70] |
Ren, Z. B. et al. Fringe pattern improvement and super-resolution using deep learning in digital holography. IEEE Transactions on Industrial Informatics 15, 6179-6186 (2019). doi: 10.1109/TII.2019.2913853 |
[71] |
Wang, K. Q. et al. One-step robust deep learning phase unwrapping. Optics Express 27, 15100-15115 (2019). doi: 10.1364/OE.27.015100 |
[72] |
Spoorthi, G. E., Gorthi, R. K. S. S. & Gorthi, S. PhaseNet 2.0: phase unwrapping of noisy data based on deep learning approach. IEEE Transactions on Image Processing 29, 4862-4872 (2020). doi: 10.1109/TIP.2020.2977213 |
[73] |
Yang, F. S. et al. Robust phase unwrapping via deep image prior for quantitative phase imaging. IEEE Transactions on Image Processing 30, 7025-7037 (2021). doi: 10.1109/TIP.2021.3099956 |
[74] |
Horisaki, R., Takagi, R. & Tanida, J. Deep-learning-generated holography. Applied Optics 57, 3859-3863 (2018). doi: 10.1364/AO.57.003859 |
[75] |
Eybposh, M. H. et al. DeepCGH: 3D computer-generated holography using deep learning. Optics Express 28, 26636-26650 (2020). doi: 10.1364/OE.399624 |
[76] |
Lee, J. et al. Deep neural network for multi-depth hologram generation and its training strategy. Optics Express 28, 27137-27154 (2020). doi: 10.1364/OE.402317 |
[77] |
Peng, Y. F. et al. Neural holography with camera-in-the-loop training. ACM Transactions on Graphics 39, 185 (2020). |
[78] |
Shi, L. et al. Towards real-time photorealistic 3D holography with deep neural networks. Nature 591, 234-239 (2021). doi: 10.1038/s41586-020-03152-0 |
[79] |
Kang, J. W. et al. Deep-learning-based hologram generation using a generative model. Applied Optics 60, 7391-7399 (2021). doi: 10.1364/AO.427262 |
[80] |
Liu, S. C. & Chu, D. P. Deep learning for hologram generation. Optics Express 29, 27373-27395 (2021). doi: 10.1364/OE.418803 |
[81] |
Wu, J. C. et al. High-speed computer-generated holography using an autoencoder-based deep neural network. Optics Letters 46, 2908-2911 (2021). doi: 10.1364/OL.425485 |
[82] |
Lohmann, A. W. & Paris, D. P. Binary Fraunhofer holograms, generated by computer. Applied Optics 6, 1739-1748 (1967). doi: 10.1364/AO.6.001739 |
[83] |
Brown, B. R. & Lohmann, A. W. Computer-generated binary holograms. IBM Journal of Research and Development 13, 160-168 (1969). doi: 10.1147/rd.132.0160 |
[84] |
Birch, K. G. & Green, F. J. The application of computer-generated holograms to testing optical elements. Journal of Physics D: Applied Physics 5, 1982-1992 (1972). doi: 10.1088/0022-3727/5/11/306 |
[85] |
Osten, W., Baumbach, T. & Jüptner, W. Comparative digital holography. Optics Letters 27, 1764-1766 (2002). doi: 10.1364/OL.27.001764 |
[86] |
Pruss, C., et al. Computer-generated holograms in interferometric testing. Optical Engineering 43, 2534-2540 (2004). doi: 10.1117/1.1804544 |
[87] |
Wyrowski, F. Diffractive optical elements: iterative calculation of quantized, blazed phase structures. Journal of the Optical Society of America A 7, 961-969 (1990). doi: 10.1364/JOSAA.7.000961 |
[88] |
Slinger, C., Cameron, C. & Stanley, M. Computer-generated holography as a generic display technology. Computer 38, 46-53 (2005). |
[89] |
Bove, V. M. Jr. Display holography’s digital second act. Proceedings of the IEEE 100, 918-928 (2012). doi: 10.1109/JPROC.2011.2182071 |
[90] |
Lucente, M. Interactive computation of holograms using a look-up table. Journal of Electronic Imaging 2, 28-34 (1993). doi: 10.1117/12.133376 |
[91] |
Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America 79, 2554-2558 (1982). doi: 10.1073/pnas.79.8.2554 |
[92] |
White, H. J. & Wright, W. A. Holographic implementation of a hopfield model with discrete weightings. Applied Optics 27, 331-338 (1988). doi: 10.1364/AO.27.000331 |
[93] |
Psaltis, D. et al. Holography in artificial neural networks. Nature 343, 325-330 (1990). doi: 10.1038/343325a0 |
[94] |
Hsu, K. Y., L i, H. Y. & Psaltis, D. Holographic implementation of a fully connected neural network. Proceedings of the IEEE 78, 1637-1645 (1990). doi: 10.1109/5.58357 |
[95] |
Keller, P. E. & Gmitro, A. F. Design and analysis of fixed planar holographic interconnects for optical neural networks. Applied Optics 31, 5517-5526 (1992). doi: 10.1364/AO.31.005517 |
[96] |
Jutamulia, S. & Yu, F. T. S. Overview of hybrid optical neural networks. Optics & Laser Technology 28, 59-72 (1996). |
[97] |
Kaikhah, K. & Loochan, F. Computer generated holograms for optical neural networks. Applied Intelligence 14, 145-160 (2001). doi: 10.1023/A:1008314025737 |
[98] |
Lin, X., et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004-1008 (2018). doi: 10.1126/science.aat8084 |
[99] |
Yan, T., et al. Fourier-space diffractive deep neural network. Physical Review Letters 123, 023901 (2019). doi: 10.1103/PhysRevLett.123.023901 |
[100] |
Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe Nevada: Curran Associates Inc., 2012, 1097-1105. |
[101] |
He, K. M. et al. Deep residual learning for image recognition. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016. |
[102] |
He, K. M. et al. Identity mappings in deep residual networks. Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands: Springer, 2016. |
[103] |
Bergstra, J. & Bengio, Y. Random search for hyper-parameter optimization. Journal of Machine Learning Research 13, 281-305 (2012). |
[104] |
Lee, S. et al. Background information of deep learning for structural engineering. Archives of Computational Methods in Engineering 25, 121-129 (2018). doi: 10.1007/s11831-017-9237-0 |
[105] |
Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Networks 4, 251-257 (1991). doi: 10.1016/0893-6080(91)90009-T |
[106] |
Patterson, J. & Gibson, A. Deep Learning: A Practitioner's Approach. (Sebastopol, CA: O'reilly, 2017). |
[107] |
Hansen, C. Activation functions explained -GELU, SELU, ELU, ReLU and more. at https://mlfromscratch.com/activation-functions-explained/. |
[108] |
Lei, N. et al. Geometric understanding of deep learning. arXiv: 1805.10451 (2018). |
[109] |
Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 322, 533-536 (1986). doi: 10.1038/322533a0 |
[110] |
Ionescu, C., Vantzos, O. & Sminchisescu, C. Matrix backpropagation for deep networks with structured layers. Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015, 2965-2973. |
[111] |
Rojas, R. Neural Networks: a Systematic Introduction. (Berlin, Heidelberg: Springer, 1996). |
[112] |
Yuan, Y. X. Step-sizes for the gradient method. AMS/IP Studies in Advanced Mathematics 42, 785-796 (2008). |
[113] |
Kingma, D. & Ba, J. Adam: a method for stochastic optimization. arXiv: 1412: 6980 (2017). |
[114] |
Zhao, H., et al. Loss functions for image restoration with neural networks. IEEE Transactions on Computational Imaging 3, 47-57 (2017). doi: 10.1109/TCI.2016.2644865 |
[115] |
Menard, S. Coefficients of determination for multiple logistic regression analysis. The American Statistician 54, 17-24 (2000). |
[116] |
Xue, Y. J., et al. Reliable deep-learning-based phase imaging with uncertainty quantification. Optica 6, 618-629 (2019). doi: 10.1364/OPTICA.6.000618 |
[117] |
Lyu, M. et al. Deep-learning-based ghost imaging. Scientific Reports 7, 17865 (2017). doi: 10.1038/s41598-017-18171-7 |
[118] |
Lyu, M. et al. Exploit imaging through opaque wall via deep learning. arXiv: 1708.07881 (2017). |
[119] |
Lyu, M. et al. Learning-based lensless imaging through optically thick scattering media. Advanced Photonics 1, 036002 (2019). |
[120] |
Hubel, D. H. & Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology 195, 215-243 (1968). doi: 10.1113/jphysiol.1968.sp008455 |
[121] |
Goodman, J. W. Introduction to Fourier Optics. (Englewood: Roberts & Company, 2004). |
[122] |
Voelz, D. G. Computational Fourier Optics: A MATLAB Tutorial. (Bellingham: SPIE, 2011). |
[123] |
Scherer, D., Müller, A. C. & Behnke, S. Evaluation of pooling operations in convolutional architectures for object recognition. Proceedings of the 20th International Conference on Artificial Neural Networks. Thessaloniki, Greece: Springer, 2010, 92-101. |
[124] |
Zeiler, M. D. et al. Deconvolutional networks. Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE, 2010. |
[125] |
Mohan, R. Deep deconvolutional networks for scene parsing. arXiv: 1411.4101 (2014). |
[126] |
Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. arXiv: 1505.04597 (2015). |
[127] |
Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Chia Laguna Resort, Sardinia, Italy: PMLR, 2010. |
[128] |
Shimobaba, T. et al. Digital holographic particle volume reconstruction using a deep neural network. Applied Optics 58, 1900-1906 (2019). doi: 10.1364/AO.58.001900 |
[129] |
Zhang, Z. D. et al. Holo-UNet: hologram-to-hologram neural network restoration for high fidelity low light quantitative phase imaging of live cells. Biomedical Optics Express 11, 5478-5487 (2020). doi: 10.1364/BOE.395302 |
[130] |
Chang, T. et al. Calibration-free quantitative phase imaging using data-driven aberration modeling. Optics Express 28, 34835-34847 (2020). doi: 10.1364/OE.412009 |
[131] |
Wang, F. et al. Learning from simulation: an end-to-end deep-learning approach for computational ghost imaging. Optics Express 27, 25560-25572 (2019). doi: 10.1364/OE.27.025560 |
[132] |
Zheng, S. S. et al. Incoherent imaging through highly nonstatic and optically thick turbid media based on neural network. Photonics Research 9, B220-B228 (2021). doi: 10.1364/PRJ.416246 |
[133] |
Zheng, S. S. et al. Non-line-of-sight imaging under white-light illumination: a two-step deep learning approach. Optics Express 29, 40091-40105 (2021). doi: 10.1364/OE.443127 |
[134] |
Zhou, Z. W. et al. Unet++: a nested U-net architecture for medical image segmentation. Proceedings of the Deep Learning in Medical Image Analysis - and - Multimodal Learning for Clinical Decision Support - 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018. Granada, Spain: Springer, 2018. |
[135] |
Zhang, X. Y., Wa ng, F. & Situ, G. BlindNet: an untrained learning approach toward computational imaging with model uncertainty. Journal of Physics D: Applied Physics 55, 034001 (2022). doi: 10.1088/1361-6463/ac2ad4 |
[136] |
Goodfellow, I. J. et al. Generative adversarial networks. Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada, 2014. |
[137] |
Moon, I. et al. Noise-free quantitative phase imaging in Gabor holography with conditional generative adversarial network. Optics Express 28, 26284-26301 (2020). doi: 10.1364/OE.398528 |
[138] |
Zhang, Y. H. et al. PhaseGAN: a deep-learning phase-retrieval approach for unpaired datasets. Optics Express 29, 19593-19604 (2021). doi: 10.1364/OE.423222 |
[139] |
Wu, Y. C. et al. Bright-field holography: cross-modality deep learning enables snapshot 3D imaging with bright-field contrast using a single hologram. Light: Science & Applications 8, 25 (2019). |
[140] |
Mangal, J. et al. Unsupervised organization of cervical cells using bright-field and single-shot digital holographic microscopy. Journal of Biophotonics 12, e201800409 (2019). |
[141] |
Salimans, T. et al. Improved techniques for training GANs. Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: Curran Associates Inc., 2016. |
[142] |
Zhu, J. Y. et al. Unpaired image-to-image translation using cycle-consistent adversarial networks. Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017. |
[143] |
Isola, P. et al. Image-to-image translation with conditional adversarial networks. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017. |
[144] |
Nehme, E. et al. Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica 5, 458-464 (2018). doi: 10.1364/OPTICA.5.000458 |
[145] |
Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nature Methods 15, 1090-1097 (2018). doi: 10.1038/s41592-018-0216-7 |
[146] |
Matlock, A. & Tian, L. Physical model simulator-trained neural network for computational 3D phase imaging of multiple-scattering samples. arXiv: 2103.15795 (2021). |
[147] |
LeCun, Y. et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86, 2278-2324 (1998). doi: 10.1109/5.726791 |
[148] |
Huang, G. B. et al. Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments. (University of Massachusetts, 2007). |
[149] |
Lee, C. H. et al. MaskGAN: towards diverse and interactive facial image manipulation. Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA: IEEE, 2020. |
[150] |
Neyshabur, B. et al. Exploring generalization in deep learning. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, CA, USA: Curran Associates Inc., 2017. |
[151] |
Lempitsky, V., Vedaldi, A. & Ulyanov, D. Deep image prior. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018. |
[152] |
Bostan, E. et al. Deep phase decoder: self-calibrating phase microscopy with an untrained deep neural network. Optica 7, 559-562 (2020). doi: 10.1364/OPTICA.389314 |
[153] |
Zhou, K. C. & Horstmeyer, R. Diffraction tomography with a deep image prior. Optics Express 28, 12872-12896 (2020). doi: 10.1364/OE.379200 |
[154] |
Yang, D. Y. et al. Dynamic coherent diffractive imaging with a physics-driven untrained learning method. Optics Express 29, 31426-31442 (2021). doi: 10.1364/OE.433507 |
[155] |
Wang, F. et al. Far-field super-resolution ghost imaging with a deep neural network constraint. Light: Science & Applications 11, 1 (2022). |
[156] |
Bengio, Y. Learning deep architectures for AI. Foundations and Trends in Machine Learning 2, 1-127 (2009). doi: 10.1561/2200000006 |
[157] |
Sjöberg, J. et al. Nonlinear black-box modeling in system identification: a unified overview. Automatica 31, 1691-1724 (1995). doi: 10.1016/0005-1098(95)00120-8 |
[158] |
Tzeng, F. Y. & Ma, K. L. Opening the black box -data driven visualization of neural networks. Proceedings of the VIS 05. IEEE Visualization, 2005. Minneapolis, MN, USA: IEEE, 2005. |
[159] |
Karpatne, A., et al. Theory-guided data science: a new paradigm for scientific discovery from data. IEEE Transactions on Knowledge and Data Engineering 29, 2318-2331 (2017). doi: 10.1109/TKDE.2017.2720168 |
[160] |
Beucler, T. et al. Enforcing analytic constraints in neural networks emulating physical systems. Physical Review Letters 126, 098302 (2021). doi: 10.1103/PhysRevLett.126.098302 |
[161] |
Buhrmester, V., Münch, D. & Arens, M. Analysis of explainers of black box deep neural networks for computer vision: a survey. Machine Learning and Knowledge Extraction 3, 966-989 (2021). doi: 10.3390/make3040048 |
[162] |
Arrieta, A. B. et al. Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion 58, 82-115 (2020). doi: 10.1016/j.inffus.2019.12.012 |
[163] |
Willard, J. et al. Integrating scientific knowledge with machine learning for engineering and environmental systems. arXiv: 2003.04919v5 (2021). |
[164] |
Roscher, R. et al. Explainable machine learning for scientific insights and discoveries. IEEE Access 8, 42200-42216 (2020). doi: 10.1109/ACCESS.2020.2976199 |
[165] |
Wijesinghe, P. & Dholakia, K. Emergent physics-informed design of deep learning for microscopy. Journal of Physics: Photonics 3, 21003 (2021). doi: 10.1088/2515-7647/abf02c |
[166] |
Ba, Y. H., Zhao, G. Y. & Kadambi, A. Blending diverse physical priors with neural networks. arXiv: 1910.00201 (2019). |
[167] |
Goy, A. et al. Low photon count phase retrieval using deep learning. Physical Review Letters 121, 243902 (2018). doi: 10.1103/PhysRevLett.121.243902 |
[168] |
Zeng, T. J. & Lam, E. Y. Model-based network architecture for image reconstruction in lensless imaging. Proceedings of SPIE 11551, Holography, Diffractive Optics, and Applications X. SPIE, 2020. |
[169] |
Iten, R. et al. Discovering physical concepts with neural networks. Physical Review Letters 124, 010508 (2020). doi: 10.1103/PhysRevLett.124.010508 |
[170] |
Takeda, M. & Goodman, J. W. Neural networks for computation: number representations and programming complexity. Applied Optics 25, 3033-3046 (1986). doi: 10.1364/AO.25.003033 |
[171] |
Takeda, M. Phase unwrapping by neural network. Proceedings of the FRINGE'93. Akademie Verlag, 1993, 136-141. |
[172] |
Kreis, T. M., Biedermann, R. & Jüptner, W. P. O. Evaluation of holographic interference patterns by artificial neural networks. Proceedings of SPIE 2544, Interferometry VⅡ: Techniques and Analysis. San Diego, CA, United States: SPIE, 1995, 11-24. |
[173] |
Kreis, T., Jüptner, W. & Biedermann, R. Neural network approach to holographic nondestructive testing. Applied Optics 34, 1407-1415 (1995). doi: 10.1364/AO.34.001407 |
[174] |
Frauel, Y. & Javidi, B. Neural network for three-dimensional object recognition based on digital holography. Optics Letters 26, 1478-1480 (2001). doi: 10.1364/OL.26.001478 |
[175] |
Situ, G. & Sheridan, J. T. Holography: an interpretation from the phase-space point of view. Optics Letters 32, 3492-3494 (2007). doi: 10.1364/OL.32.003492 |
[176] |
Stern, A. & Javidi, B. Space-bandwidth conditions for efficient phase-shifting digital holographic microscopy. Journal of the Optical Society of America A 25, 736-741 (2008). doi: 10.1364/JOSAA.25.000736 |
[177] |
Claus, D., Iliescu, D. & Bryanston-Cross, P. Quantitative space-bandwidth product analysis in digital holography. Applied Optics 50, H116-H127 (2011). doi: 10.1364/AO.50.00H116 |
[178] |
Rogers, G. L. In-line soft-x-ray holography: the unwanted image. Optics Letters 19, 67 (1994). doi: 10.1364/OL.19.000067 |
[179] |
Xiao, T. Q. et al. Digital image decoding for in-line X-ray holography using two holograms. Journal of Modern Optics 45, 343-353 (1998). doi: 10.1080/09500349808231693 |
[180] |
Tonomura, A. Applications of electron holography. Reviews of Modern Physics 59, 639-669 (1987). doi: 10.1103/RevModPhys.59.639 |
[181] |
Tegze, M. & Faigel, G. X-ray holography with atomic resolution. Nature 380, 49-51 (1996). doi: 10.1038/380049a0 |
[182] |
Korecki, P., Korecki, J. & Ślȩzak, T. Atomic resolution $ \gamma $-ray holography using the Mössbauer effect. Physical Review Letters 79, 3518-3521 (1997). doi: 10.1103/PhysRevLett.79.3518 |
[183] |
Zhang, J. Y. et al. Phase-shifting lensless Fourier-transform holography with a Chinese Taiji lens. Optics Letters 43, 4085-4087 (2018). doi: 10.1364/OL.43.004085 |
[184] |
Zhang, S. M. et al. Phase-shifting radial-shearing digital holography with Greek-ladder zone plates. Optics Letters 43, 5575-5578 (2018). doi: 10.1364/OL.43.005575 |
[185] |
Liu, G. & Scott, P. D. Phase retrieval and twin-image elimination for in-line Fresnel holograms. Journal of the Optical Society of America A 4, 159-165 (1987). doi: 10.1364/JOSAA.4.000159 |
[186] |
Teague, M. R. Deterministic phase retrieval: a Green's function solution. Journal of the Optical Society of America 73, 1434-1441 (1983). doi: 10.1364/JOSA.73.001434 |
[187] |
Barton, J. J. Removing multiple scattering and twin images from holographic images. Physical Review Letters 67, 3106-3109 (1991). doi: 10.1103/PhysRevLett.67.3106 |
[188] |
Nugent, K. A. Twin-image elimination in Gabor holography. Optics Communications 78, 293-299 (1990). doi: 10.1016/0030-4018(90)90364-Y |
[189] |
Tiller, J. B. et al. The holographic twin image problem: a deterministic phase solution. Optics Communications 183, 7-14 (2000). doi: 10.1016/S0030-4018(00)00852-X |
[190] |
Bleloch, A. L., Howie, A. & James, E. M. Amplitude recovery in Fresnel projection microscopy. Applied Surface Science 111, 180-184 (1997). doi: 10.1016/S0169-4332(96)00707-6 |
[191] |
Levi, A. & Stark, H. Image restoration by the method of generalized projections with application to restoration from magnitude. Journal of the Optical Society of America A 1, 932-943 (1984). doi: 10.1364/JOSAA.1.000932 |
[192] |
Shechtman, Y. et al. Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Processing Magazine 32, 87-109 (2015). doi: 10.1109/MSP.2014.2352673 |
[193] |
Fournier, C. et al. Inverse problem approaches for digital hologram reconstruction. Proceedings of SPIE 8043, Three-Dimensional Imaging, Visualization, and Display 2011. Orlando, Florida, United States: SPIE, 2011. |
[194] |
McCann, M. T., J in, K. H. & Unser, M. Convolutional neural networks for inverse problems in imaging: a review. IEEE Signal Processing Magazine 34, 85-95 (2017). |
[195] |
Misell, D. L. An examination of an iterative method for the solution of the phase problem in optics and electron optics: I. test calculations. Journal of Physics D: Applied Physics 6, 2200-2216 (1973). doi: 10.1088/0022-3727/6/18/305 |
[196] |
Greenbaum, A. & Ozcan, A. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy. Optics Express 20, 3129-3143 (2012). doi: 10.1364/OE.20.003129 |
[197] |
Zhang, J. C. et al. Phase unwrapping in optical metrology via denoised and convolutional segmentation networks. Optics Express 27, 14903-14912 (2019). doi: 10.1364/OE.27.014903 |
[198] |
Zhang, T. et al. Rapid and robust two-dimensional phase unwrapping via deep learning. Optics Express 27, 23173-23185 (2019). doi: 10.1364/OE.27.023173 |
[199] |
Dardikman-Yoffe, G. et al. PhUn-Net: ready-to-use neural network for unwrapping quantitative phase images of biological cells. Biomedical Optics Express 11, 1107-1121 (2020). doi: 10.1364/BOE.379533 |
[200] |
Wu, C. C. et al. Phase unwrapping based on a residual en-decoder network for phase images in Fourier domain Doppler optical coherence tomography. Biomedical Optics Express 11, 1760-1771 (2020). doi: 10.1364/BOE.386101 |
[201] |
Lyu, M. et al. Fast autofocusing in digital holography using the magnitude differential. Applied Optics 56, F152-F157 (2017). doi: 10.1364/AO.56.00F152 |
[202] |
Bian, Y. X. et al. Optical refractometry using lensless holography and autofocusing. Optics Express 26, 29614-29628 (2018). doi: 10.1364/OE.26.029614 |
[203] |
Zhang, Y. B. et al. Edge sparsity criterion for robust holographic autofocusing. Optics Letters 42, 3824-3827 (2017). doi: 10.1364/OL.42.003824 |
[204] |
Jaferzadeh, K. et al. No-search focus prediction at the single cell level in digital holographic imaging with deep convolutional neural network. Biomedical Optics Express 10, 4276-4289 (2019). doi: 10.1364/BOE.10.004276 |
[205] |
Xiao, W. et al. Sensing morphogenesis of bone cells under microfluidic shear stress by holographic microscopy and automatic aberration compensation with deep learning. Lab on A Chip 21, 1385-1394 (2021). doi: 10.1039/D0LC01113D |
[206] |
Gopinathan, U., Pedrini, G. & Osten, W. Coherence effects in digital in-line holographic microscopy. Journal of the Optical Society of America A 25, 2459-2466 (2008). doi: 10.1364/JOSAA.25.002459 |
[207] |
Dainty, J. C. et al. Laser Speckle and Related Phenomena. (Berlin, Heidelberg: Springer 1975). |
[208] |
Bianco, V. et al. Strategies for reducing speckle noise in digital holography. Light: Science & Applications 7, 48 (2018). |
[209] |
Lehtinen, J. et al. Noise2Noise: learning image restoration without clean data. Proceedings of the 35th International Conference on Machine Learning. Stockholm, Sweden: PMLR, 2018. |
[210] |
Yin, D. et al. Speckle noise reduction in coherent imaging based on deep learning without clean data. Optics and Lasers in Engineering 133, 106151 (2020). doi: 10.1016/j.optlaseng.2020.106151 |
[211] |
Blinder, D. et al. Signal processing challenges for digital holographic video display systems. Signal Processing: Image Communication 70, 114-130 (2019). doi: 10.1016/j.image.2018.09.014 |
[212] |
Zhang, F. et al. An approach to increase efficiency of DOE based pupil shaping technique for off-axis illumination in optical lithography. Optics Express 23, 4482-4493 (2015). doi: 10.1364/OE.23.004482 |
[213] |
He, Z. H. et al. Progress in virtual reality and augmented reality based on holographic display. Applied Optics 58, A74-A81 (2019). doi: 10.1364/AO.58.000A74 |
[214] |
Shimobaba, T. et al. Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display. Optics Express 18, 19504-19509 (2010). doi: 10.1364/OE.18.019504 |
[215] |
Ito, T. et al. Special-purpose computer HORN-5 for a real-time electroholography. Optics Express 13, 1923-1932 (2005). doi: 10.1364/OPEX.13.001923 |
[216] |
Goi, H., Komuro, K. & Nomura, T. Deep-learning-based binary hologram. Applied Optics 59, 7103-7108 (2020). doi: 10.1364/AO.393500 |
[217] |
Park, D. Y. & Park, J. H. Hologram conversion for speckle free reconstruction using light field extraction and deep learning. Optics Express 28, 5393-5409 (2020). doi: 10.1364/OE.384888 |
[218] |
Ren, H. R. et al. Three-dimensional vectorial holography based on machine learning inverse design. Science Advances 6, eaaz4261 (2020). doi: 10.1126/sciadv.aaz4261 |
[219] |
Goodman, J. W. et al. Optical interconnections for VLSI systems. Proceedings of the IEEE 72, 850-866 (1984). doi: 10.1109/PROC.1984.12943 |
[220] |
Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39-47 (2020). doi: 10.1038/s41586-020-2973-6 |
[221] |
Luo, X. H. et al. Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible. arXiv: 2107.07873 (2021). |
[222] |
Zhou, T. K. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nature Photonics 15, 367-373 (2021). doi: 10.1038/s41566-021-00796-w |
[223] |
Zhou, T. K. et al. In situ optical backpropagation training of diffractive optical neural networks. Photonics Research 8, 6000940 (2020). |
[224] |
Xiao, Y. L. et al. Unitary learning for diffractive deep neural network. Optics and Lasers in Engineering 139, 106499 (2021). doi: 10.1016/j.optlaseng.2020.106499 |
[225] |
Xiao, Y. L. et al. Optical random phase dropout in a diffractive deep neural network. Optics Letters 46, 5260-5263 (2021). doi: 10.1364/OL.428761 |
[226] |
Qian, C. et al. Performing optical logic operations by a diffractive neural network. Light: Science & Applications 9, 59 (2020). |
[227] |
Wang, P. P. et al. Orbital angular momentum mode logical operation using optical diffractive neural network. Photonics Research 9, 2116-2124 (2021). doi: 10.1364/PRJ.432919 |
[228] |
Kulce, O. et al. All-optical information-processing capacity of diffractive surfaces. Light: Science & Applications 10, 25 (2021). |
[229] |
Huang, Z. B. et al. All-optical signal processing of vortex beams with diffractive deep neural networks. Physical Review Applied 15, 014037 (2021). doi: 10.1103/PhysRevApplied.15.014037 |
[230] |
Rahman, S. S. & Ozcan, A. Computer-free, all-optical reconstruction of holograms using diffractive networks. arXiv: 2107.08177 (2021). |
[231] |
Veli, M. et al. Terahertz pulse shaping using diffractive surfaces. Nature Communications 12, 37 (2021). doi: 10.1038/s41467-020-20268-z |
[232] |
Li, J. X. et al. Spectrally encoded single-pixel machine vision using diffractive networks. Science Advances 7, eabd7690 (2021). doi: 10.1126/sciadv.abd7690 |
[233] |
Wang, F. et al. Single-pixel imaging using physics enhanced deep learning. Photonics Research 10, 104-110 (2022). doi: 10.1364/PRJ.440123 |
[234] |
Cai, X. D. et al. Dynamically controlling terahertz wavefronts with cascaded metasurfaces. Advanced Photonics 3, 036003 (2021). |
[235] |
Lobo, J. L. et al. Spiking Neural Networks and online learning: an overview and perspectives. Neural Networks 121, 88-100 (2020). doi: 10.1016/j.neunet.2019.09.004 |