[1] Zhang, Z. et al. High precision space debris laser ranging with 4.2 W double-pulse picosecond laser at 1 kHz in 532nm. Optik (Stuttg). 179, 691–699 (2019).
[2] Walker, L. & Vasile, M. Space debris remediation using space-based lasers. Adv. Sp. Res. 72, 2786-2800 (2023). doi: 10.1016/j.asr.2023.06.031
[3] Jia, M. et al. Recent progress in laser shock peening: Mechanism, laser systems and development prospects. Surfaces and Interfaces 44, (2024).
[4] Malinauskas, M. et al. Ultrafast laser processing of materials: From science to industry. Light Sci. Appl. 5, 3-5 (2016).
[5] Di Nicola, J. M. et al. Delivering laser performance conditions to enable fusion ignition, and beyond at the National Ignition Facility. High Energy Density Phys. 52, (2024).
[6] Rana, P. et al. Multilayer dielectric coated Fabry Perot spectral beam combiner for high power, narrowband, widely tunable laser applications. Opt. Laser Technol. 128, 106210 (2020). doi: 10.1016/j.optlastec.2020.106210
[7] Dong, S., Jiao, H., Wang, Z., Zhang, J. & Cheng, X. Interface and defects engineering for multilayer laser coatings. Prog. Surf. Sci. 97, 100663 (2022). doi: 10.1016/j.progsurf.2022.100663
[8] Thelen, A. Milestones in optical coating technology: from A. Smakula / John Strong until today. Adv. Opt. Thin Film. II 5963, 596301 (2005). doi: 10.1117/12.625235
[9] Katsidis, C. C. & Siapkas, D. I. General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Appl. Opt. 41, 3978 (2002). doi: 10.1364/AO.41.003978
[10] Tolenis, T. et al. Next generation highly resistant mirrors featuring all-silica layers. Sci. Rep. 7, (2017).
[11] Kanamori, Y. , Hane, K. , Sai, H. & Yugami, H. 100 Nm Period Silicon Antireflection Structures Fabricated Using a Porous Alumina Membrane Mask. Appl. Phys. Lett. 78, 142–143 (2001).
[12] Yu, Z., Gao, H., Wu, W., Ge, H. & Chou, S. Y. Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom. 21, 2874-2877 (2003).
[13] Yoo, J. H. et al. Scalable Light-Printing of Substrate-Engraved Free-Form Metasurfaces. ACS Appl. Mater. Interfaces 11, 22684-22691 (2019). doi: 10.1021/acsami.9b07135
[14] Ray, N. J., Yoo, J. H., Nguyen, H. T. & Feigenbaum, E. Designer Metasurfaces for Antireflective Applications Enabled by Advanced Nanoparticle Technology. Adv. Opt. Mater. 10, 1-8 (2022).
[15] Ray, N. J., Yoo, J. H., Nguyen, H. T., Johnson, M. A. & Feigenbaum, E. Birefringent Glass-Engraved Tilted Pillar Metasurfaces for High Power Laser Applications. Adv. Sci. 10, 1-10 (2023).
[16] Shuai, K. et al. Multilayer dielectric grating pillar-removal damage induced by a picosecond laser. High Power Laser Sci. Eng. 10, e42 (2022). doi: 10.1017/hpl.2022.34
[17] Dong, S. et al. Broadband depolarized perfect Littrow diffraction with multilayer freeform metagratings. Optica 10, 585 (2023). doi: 10.1364/OPTICA.486332
[18] Nishijima, Y. et al. Anti-reflective surfaces: Cascading nano/microstructuring. APL Photonics 1, (2016).
[19] Ray, N. J. , Yoo, J. H. , Nguyen, H. T. , Johnson, M. A. & Feigenbaum, E. Glass-engraved metasurfaces: The path to ultra-low reflectance, extreme broadband performance, and high acceptance angle for high power laser applications. in Laser-Induced Damage in Optical Materials 2022 (eds. Carr, C. W. , Ristau, D. & Menoni, C. S. ) vol. 12300 17 (SPIE, 2022).
[20] Fu, S. et al. Review of pulse compression gratings for chirped pulse amplification system. Opt. Eng. 60, 45-52 (2021).
[21] Kemme, S. A., Scrymgeour, D. A. & Peters, D. W. High efficiency diffractive optical elements for spectral beam combining. Laser Technol. Def. Secur. VIII 8381, 83810Q (2012).
[22] Liu, N. et al. Three-dimensional photonic metamaterials at optical frequencies. Nat. Mater. 7, 31-37 (2008). doi: 10.1038/nmat2072
[23] Khorasaninejad, M. & Capasso, F. Metalenses: Versatile multifunctional photonic components. Science (80-. ). 358, (2017).
[24] Ni, X. , Wong, Z. J. , Mrejen, M. , Wang, Y. & Zhang, X. An ultrathin invisibility skin cloak for visible light. Science (80-. ). 349, 1310–1314 (2015).
[25] Ottomaniello, A. et al. Highly conformable terahertz metasurface absorbers via two-photon polymerization on polymeric ultra-thin films. Nanophotonics 12, 1557-1570 (2023). doi: 10.1515/nanoph-2022-0667
[26] Ahmed, H. et al. Optical metasurfaces for generating and manipulating optical vortex beams. Nanophotonics 11, 941-956 (2022). doi: 10.1515/nanoph-2021-0746
[27] Huang, L., Zhang, S. & Zentgraf, T. Metasurface holography: From fundamentals to applications. Nanophotonics 7, 1169-1190 (2018). doi: 10.1515/nanoph-2017-0118
[28] Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937-943 (2015). doi: 10.1038/nnano.2015.186
[29] Wang, D. et al. Efficient generation of complex vectorial optical fields with metasurfaces. Light Sci. Appl. 10, (2021).
[30] Mikami, K. et al. A theoretical analysis for temperature dependences of laser-induced damage threshold. Laser-Induced Damage Opt. Mater. 2013 8885, 88851T (2013).
[31] Manenkov, A. A. Fundamental mechanisms of laser-induced damage in optical materials: understanding after 40 years of research. Laser-Induced Damage Opt. Mater. 2008 7132, 713202 (2008).
[32] Turowski, M. , Jupé, M. , Jensen, L. & Ristau, D. Laser-induced damage and nonlinear absorption of ultrashort laser pulses in the bulk of fused silica. Laser-Induced Damage Opt. Mater. 2009 7504, 75040H (2009).
[33] Andreev, A. A., Platonov, K. Y., Okada, T. & Toraya, S. Nonlinear absorption of a short intense laser pulse in a nonuniform plasma. Phys. Plasmas 10, 220-226 (2003). doi: 10.1063/1.1523931
[34] Rayner, D. M., Naumov, A. & Corkum, P. B. Ultrashort pulse non-linear optical absorption in transparent media. Opt. Express 13, 3208 (2005). doi: 10.1364/OPEX.13.003208
[35] Chichkov, B. N., Momma, C., Nolte, S., Alvensleben, F. & Tünnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A Mater. Sci. Process. 63, 109-115 (1996). doi: 10.1007/BF01567637
[36] Wellershoff, S. S., Hohlfeld, J., Güdde, J. & Matthias, E. The role of electron-phonon coupling in femtosecond laser damage of metals. Appl. Phys. A Mater. Sci. Process. 69, 99-107 (1999).
[37] Shugaev, M. V. et al. Fundamentals of ultrafast laser-material interaction. MRS Bull. 41, 960-968 (2016). doi: 10.1557/mrs.2016.274
[38] Vadillo, J. M. & Laserna, J. J. Laser-induced plasma spectrometry: Truly a surface analytical tool. Spectrochim. Acta - Part B At. Spectrosc. 59, 147-161 (2004). doi: 10.1016/j.sab.2003.11.006
[39] Velpula, P. K., Kramer, D. & Rus, B. Femtosecond Laser-Induced Damage Characterization. Coatings 10, 603 (2020). doi: 10.3390/coatings10060603
[40] Cheng, X. et al. Laser damage resistance of dichroic mirrors at 532nm and 1064nm. Laser-Induced Damage Opt. Mater. 2010 7842, 78420C (2010).
[41] Ling, X. , Liu, S. & Liu, X. Defect induced thermal-plasma coupling damage in optical films under nanosecond pulse laser irradiation. Phys. Scr. 94, (2019).
[42] Papernov, S. & Schmid, A. W. Testing asymmetry in plasma-ball growth seeded by a nanoscale absorbing defect embedded in a SiO2 thin-film matrix subjected to UV pulsed-laser radiation. J. Appl. Phys. 104, (2008).
[43] Cheng, X. et al. The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses. Light Sci. Appl. 2, e80 (2013). doi: 10.1038/lsa.2013.36
[44] Li, X., Dou, X. an, Zhu, H., Hu, Y. & Wang, X. Nanosecond laser-induced surface damage and its mechanism of CaF2 optical window at 248 nm KrF excimer laser. Sci. Rep. 10, 1-14 (2020). doi: 10.1038/s41598-019-56847-4
[45] Lin, X. et al. Damage characteristics of pulse compression grating irradiated by a nanosecond laser. Opt. Mater. Express 12, 643 (2022). doi: 10.1364/OME.449428
[46] Hao, Y. et al. Asymmetrical damage growth of multilayer dielectric gratings induced by picosecond laser pulses. Opt. Express 26, 8791 (2018). doi: 10.1364/OE.26.008791
[47] Mirza, I. et al. Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown. Sci. Rep. 6, 1-11 (2016). doi: 10.1038/s41598-016-0001-8
[48] Rosenfeld, A., Lorenz, M., Stoian, R. & Ashkenasi, D. Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation. Appl. Phys. A Mater. Sci. Process. 69, 373-376 (1999). doi: 10.1007/s003390051419
[49] He, K. et al. Theoretical and experimental study of ablation of fused silica by femtosecond laser bursts. Opt. Commun. 537, 129440 (2023). doi: 10.1016/j.optcom.2023.129440
[50] Carr, C. W., Radousky, H. B. & Demos, S. G. Wavelength dependence of laser-induced damage: Determining the damage initiation mechanisms. Phys. Rev. Lett. 91, 1-4 (2003).
[51] Ristau, D. et al. Femtosecond laser-induced modifications of frequency tripling mirrors. 10805, 66 (2018).
[52] Rodríguez, C., Günster, S., Ristau, D. & Rudolph, W. Frequency tripling mirror. Opt. Express 23, 31594 (2015). doi: 10.1364/OE.23.031594
[53] Stenzel, O. Simplified expression for estimating the nonlinear refractive index of typical optical coating materials. Appl. Opt. 56, C21 (2017). doi: 10.1364/AO.56.000C21
[54] Raciukaitis, G. , Brikas, M. , Gecys, P. , Gedvilas, M. & Raciukaitis, G. Accumulation effects in laser ablation of metals with high-repetition rate lasers. Proceedings of SPIE - The International Society for Optical Engineering vol. 7005 (2008).
[55] Neuenschwander, B., Jaeggi, B., Schmid, M. & Hennig, G. Surface Structuring with Ultra-short Laser Pulses: Basics, Limitations and Needs for High Throughput. Phys. Procedia 56, 1047-1058 (2014). doi: 10.1016/j.phpro.2014.08.017
[56] Duthler, C. J. & Sparks, M. Theory of Material Failure in Crystals Containing Infrared Absorbing Inclusions. J. Appl. Phys. 44, 3038-3045 (1973). doi: 10.1063/1.1662703
[57] Brown, A., Ogloza, A., Taylor, L., Thomas, J. & Talghader, J. Continuous-wave laser damage and conditioning of particle contaminated optics. Appl. Opt. 54, 5216 (2015). doi: 10.1364/AO.54.005216
[58] Cheng, X. & Wang, Z. Defect-related properties of optical coatings. Adv. Opt. Technol. 3, 65-90 (2014). doi: 10.1515/aot-2013-0063
[59] Li, C. et al. Investigation on picosecond laser-induced damage in HfO2/SiO2 high-reflective coatings. Opt. Laser Technol. 106, 372-377 (2018). doi: 10.1016/j.optlastec.2018.04.028
[60] Neauport, J. et al. Effect of electric field on laser induced damage threshold of multilayer dielectric gratings. Opt. Express 15, 12508 (2007). doi: 10.1364/OE.15.012508
[61] Hocquet, S., Neauport, J. & Bonod, N. The role of electric field polarization of the incident laser beam in the short pulse damage mechanism of pulse compression gratings. Appl. Phys. Lett. 99, 1-4 (2011).
[62] Sozet, M. et al. Sub-picosecond laser damage growth on high reflective coatings for high power applications. Opt. Express 25, 25767 (2017). doi: 10.1364/OE.25.025767
[63] Dijon, J. , Poulingue, M. & Hue, J. Thermomechanical model of mirror laser damage at 1.06 μm: I. Nodule ejection. Laser-Induced Damage Opt. Mater. 1998 3578, 387 (1999).
[64] Stolz, C. J. , Genin, F. Y. & Pistor, T. V. Electric-field enhancement by nodular defects in multilayer coatings irradiated at normal and 45° incidence. Laser-Induced Damage Opt. Mater. 2003 5273, 41 (2004).
[65] Stolz, C. J., Feit, M. D. & Pistor, T. V. Laser intensification by spherical inclusions embedded within multilayer coatings. Appl. Opt. 45, 1594-1601 (2006). doi: 10.1364/AO.45.001594
[66] Zhang, S., Su, Z., Menoni, C. S. & Chowdhury, E. A. Influence of defects on the femtosecond laser damage resistance of multilayer dielectric gratings. Opt. Lett. 48, 1212 (2023). doi: 10.1364/OL.483581
[67] Poulingue, M., Ignat, M. & Dijon, J. Effects of particle pollution on the mechanical behaviour of multilayered systems. Thin Solid Films 348, 215-221 (1999). doi: 10.1016/S0040-6090(99)00137-6
[68] Ma, H. et al. Effect of boundary continuity on nanosecond laser damage of nodular defects in high-reflection coatings. Opt. Lett. 42, 478 (2017). doi: 10.1364/OL.42.000478
[69] Papernov, S. & Schmid, A. W. Laser-induced surface damage of optical materials: absorption sources, initiation, growth, and mitigation. in Laser-Induced Damage in Optical Materials: 2008 vol. 7132 71321J (2008).
[70] During, A. , Fossati, C. , Gatto, A. & Commandré, M. Multi-wavelength imaging of defects in uv optical materials. Opt. InfoBase Conf. Pap. (2001). doi: 10.1364/oic.2001.tue1.
[71] Papernov, S. & Schmid, A. W. Correlations between embedded single gold nanoparticles in SiO 2 thin film and nanoscale crater formation induced by pulsed-laser radiation. J. Appl. Phys. 92, 5720-5728 (2002). doi: 10.1063/1.1512691
[72] Papernov, S. , Schmid, A. W. , Anzelotti, J. , Smith, D. J. & Chrzan, Z. R. AFM-mapped nanoscale absorber-driven laser damage in UV high-reflector multilayers. in (eds. Bennett, H. E. , Guenther, A. H. , Kozlowski, M. R. , Newnam, B. E. & Soileau, M. J. ) vol. 2714 384 (1996).
[73] DiJon, J. , Poiroux, T. & Desrumaux, C. Nano absorbing centers: a key point in the laser damage of thin films. in (eds. Bennett, H. E. , Guenther, A. H. , Kozlowski, M. R. , Newnam, B. E. & Soileau, M. J. ) vol. 2966 315–325 (1997).
[74] Bonneau, F. et al. Study of UV laser interaction with gold nanoparticles embedded in silica. Appl. Phys. B Lasers Opt. 75, 803-815 (2002). doi: 10.1007/s00340-002-1049-7
[75] Genin, F. Y. , Stolz, C. J. & Kozlowski, M. R. Growth of laser4nduced damage during repetitive illumination of HfO2-SiO 2 multilayer mirror and polarizer coatings. in Laser-Induced Damage in Optical Materials: 1996 (eds. Bennett, H. E. , Guenther, A. H. , Kozlowski, M. R. , Newnam, B. E. & Soileau, M. J. ) vol. 2966 273–282 (1997).
[76] Gallais, L., Cheng, X. & Wang, Z. Influence of nodular defects on the laser damage resistance of optical coatings in the femtosecond regime. Opt. Lett. 39, 1545 (2014). doi: 10.1364/OL.39.001545
[77] Sozet, M. et al. Laser damage growth with picosecond pulses. Opt. Lett. 41, 2342 (2016). doi: 10.1364/OL.41.002342
[78] Gracewski, S. M. et al. Simulation of internal stress waves generated by laser-induced damage in multilayer dielectric gratings. Opt. Express 26, 18412 (2018). doi: 10.1364/OE.26.018412
[79] Zhang, J. et al. Design and fabrication of ultra-steep notch filters. Opt. Express 21, 21523 (2013). doi: 10.1364/OE.21.021523
[80] Zhang, Y. et al. A long wavelength infrared narrow-band reflection filter based on an asymmetric hexagonal structure. Opt. Commun. 475, 126264 (2020). doi: 10.1016/j.optcom.2020.126264
[81] Pervak, V. et al. Band filters: Two-material technology versus rugate. Appl. Opt. 46, 1190-1193 (2007). doi: 10.1364/AO.46.001190
[82] Tikhonravov, A. V., Trubetskov, M. K. & Amotchkina, T. V. Application of constrained optimization to the design of quasi-rugate optical coatings. Appl. Opt. 47, 5103-5109 (2008). doi: 10.1364/AO.47.005103
[83] Lin, Z. et al. Extending the color of ultra-thin gold films to blue region via Fabry-Pérot-Cavity-Resonance-Enhanced reflection. Optik (Stuttg). 178, 992-998 (2019). doi: 10.1016/j.ijleo.2018.09.184
[84] Yan, C. , Yang, K. Y. & Martin, O. J. F. Fano-resonance-assisted metasurface for color routing. Light Sci. Appl. 6, (2017).
[85] Stolz, C. J. Brewster’s angle thin film plate polarizer design study from an electric field perspective. in Advances in Optical Interference Coatings (eds. Amra, C. & Macleod, H. A. ) vol. 3738 347–353 (1999).
[86] Zhu, M., Yi, K., Fan, Z. & Shao, J. Theoretical and experimental research on spectral performance and laser induced damage of Brewster’s thin film polarizers. Appl. Surf. Sci. 257, 6884-6888 (2011). doi: 10.1016/j.apsusc.2011.03.023
[87] Qin, C. et al. Broadband polarizer using single-layer grating with ultra-high extinction ratio. AIP Adv. 13, 1-8 (2023).
[88] Yuan, W., Tian, S., Guo, J. & Chen, Y. Multilayer subwavelength metallic grating as a high performance polarizer in infrared short wavelengths. Opt. Lett. 49, 6793 (2024). doi: 10.1364/OL.539588
[89] Jin, G. et al. Design of double-layer metal-dielectric reflecting polarizing beam splitter grating based on simplified mode method. Optik (Stuttg). 280, 170789 (2023). doi: 10.1016/j.ijleo.2023.170789
[90] Chen, J., Wan, C. & Zhan, Q. Vectorial optical fields : recent advances and future prospects. Sci. Bull. 63, 54-74 (2018). doi: 10.1016/j.scib.2017.12.014
[91] Pervak, V. et al. High-dispersive mirrors for femtosecond lasers. Opt. Express 16, 10220 (2008). doi: 10.1364/OE.16.010220
[92] Alqattan, H. , Hui, D. , Pervak, V. & Hassan, M. T. Attosecond light field synthesis. APL Photonics 7, (2022).
[93] Chia, S. H. , Li, Y. C. , Sun, C. K. & Kärtner, F. X. Multi-band chirped mirrors for enhanced dispersion management. Opt. Laser Technol. 180, (2025).
[94] Vinokurova, V. D. et al. Metallized holographic diffraction gratings with the enhanced radiation resistance for laser pulse compression systems. Kvantovaya Elektron. 35, 569-572 (2005). doi: 10.1070/QE2005v035n06ABEH006591
[95] Perry, M. D. et al. High-Efficiency Multilayer Dielectric Diffraction Gratings. Opt. Photonics News 6, 17 (1995). doi: 10.1364/OPN.6.12.000017
[96] Wang, J., Jin, Y., Ma, J., Sun, T. & Jing, X. Design and analysis of broadband high-efficiency pulse compression gratings. Appl. Opt. 49, 2969 (2010). doi: 10.1364/AO.49.002969
[97] Flury, M., Tonchev, S., Fechner, R., Schindler, A. & Parriaux, O. High-efficiency wide-band metal-dielectric resonant grating for 20 fs pulse compression. J. Eur. Opt. Soc. 2, 1-5 (2007).
[98] Kong, W. et al. Broadband and high efficiency metal-multilayer dielectric grating based on non-quarter wave coatings as reflective mirror for 800nm. J. Mod. Opt. 59, 1680-1685 (2012). doi: 10.1080/09500340.2012.735711
[99] Kai, Y. et al. High-power laser beam shaping using a metasurface for shock excitation and focusing at the microscale. Opt. Express 31, 31308 (2023). doi: 10.1364/OE.487894
[100] He, T. et al. Perfect anomalous reflectors at optical frequencies. Sci. Adv. 8, 3381 (2022).
[101] Abdelsalam, M., Mahmoud, A. M. & Swillam, M. A. Polarization independent dielectric metasurface for infrared beam steering applications. Sci. Rep. 9, 1-7 (2019). doi: 10.1038/s41598-018-37186-2
[102] Overvig, A. C. et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light Sci. Appl. 8, (2019).
[103] Zhang, J. et al. Laser damage properties of broadband low-dispersion mirrors in sub-nanosecond laser pulse. Opt. Express 25, 305 (2017). doi: 10.1364/OE.25.000305
[104] Kong, F. et al. Femtosecond laser damage of all-dielectric pulse compression gratings. Laser Phys. 24, (2014).
[105] Liu, S. et al. Modeling of the femtosecond pulsed laser-induced damage of multi-layer dielectric gratings. Opt. Commun. 558, 130373 (2024). doi: 10.1016/j.optcom.2024.130373
[106] Huang, H. et al. Femtosecond-laser-induced damage initiation mechanism on metal multilayer dielectric gratings for pulse compression. Opt. Mater. (Amst). 75, 727-732 (2018). doi: 10.1016/j.optmat.2017.11.030
[107] Willemsen, T., Jupé, M., Gyamfi, M., Schlichting, S. & Ristau, D. Enhancement of the damage resistance of ultra-fast optics by novel design approaches. Opt. Express 25, 31948 (2017). doi: 10.1364/OE.25.031948
[108] Ray, N. J. et al. Substrate-engraved antireflective nanostructured surfaces for high-power laser applications. Optica 7, 518 (2020). doi: 10.1364/OPTICA.391217
[109] Bellum, J. C. , Field, E. S. , Winstone, T. B. & Kletecka, D. E. Low group delay dispersion optical coating for broad bandwidth high reflection at 45° Incidence, P polarization of femtosecond pulses with 900 nm center wavelength. Coatings 6, (2016).
[110] Razskazovskaya, O., Luu, T. T., Trubetskov, M., Goulielmakis, E. & Pervak, V. Nonlinear absorbance in dielectric multilayers. Optica 2, 803 (2015). doi: 10.1364/OPTICA.2.000803
[111] Gui, G. et al. Measurement and control of optical nonlinearities in dispersive dielectric multilayers. Opt. Express 29, 4947 (2021). doi: 10.1364/OE.409216
[112] Cheng, X. et al. Physical insight toward electric field enhancement at nodular defects in optical coatings. Opt. Express 23, 8609 (2015). doi: 10.1364/OE.23.008609
[113] Cheng, X. et al. Contribution of angle-dependent light penetration to electric-field enhancement at nodules in optical coatings. Opt. Lett. 42, 2086 (2017). doi: 10.1364/OL.42.002086
[114] Khabbazi Oskouei, A. et al. Design and conversion scaling laws of frequency tripling mirrors based on dielectric coating stacks. Opt. InfoBase Conf. Pap. Part F162-, 6–8 (2019).
[115] Liu, S. et al. Optimization of thin-film design for multi-layer dielectric grating. Appl. Surf. Sci. 253, 3642-3648 (2007). doi: 10.1016/j.apsusc.2006.07.071
[116] Liu, S. et al. Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor. Opt. Commun. 267, 50-57 (2006). doi: 10.1016/j.optcom.2006.06.022
[117] Xie, L. et al. Rectangular multilayer dielectric gratings with broadband high diffraction efficiency and enhanced laser damage resistance. Opt. Express 29, 2669 (2021). doi: 10.1364/OE.415847
[118] Chen, J. et al. Reducing electric-field-enhancement in metal-dielectric grating by designing grating with asymmetric ridge. Sci. Rep. 8, 1-7 (2018).
[119] Faraz, T. et al. Tuning Material Properties of Oxides and Nitrides by Substrate Biasing during Plasma-Enhanced Atomic Layer Deposition on Planar and 3D Substrate Topographies. ACS Appl. Mater. Interfaces 10, 13158-13180 (2018). doi: 10.1021/acsami.8b00183
[120] Pu, Y. et al. Annealing effects on microstructure and laser-induced damage threshold of quasi-rugate filters. Opt. Express 24, 23044 (2016). doi: 10.1364/OE.24.023044
[121] Lin, Z. et al. Effect of annealing on the properties of plasma-enhanced atomic layer deposition grown HfO2 coatings for ultraviolet laser applications. J. Alloys Compd. 946, 169443 (2023). doi: 10.1016/j.jallcom.2023.169443
[122] Ma, C. et al. Reducing optical loss of dual-ion beam sputtered HfO 2 films via optimization of coating and annealing parameters. Opt. Express 31, 41458 (2023). doi: 10.1364/OE.505342
[123] Niu, X. et al. HfO2/SiO2 nanolaminate-based composites prepared by ion beam sputtering for low-loss optics. Opt. Eng. 61, 1-12 (2021).
[124] Steinecke, M. et al. Quantizing nanolaminates as versatile materials for optical interference coatings. Appl. Opt. 59, A236 (2020). doi: 10.1364/AO.379131
[125] Jupé, M. , Lappschies, M. , Jensen, L. , Starke, K. & Ristau, D. Laser-induced damage in gradual index layers and Rugate filters. in Laser-Induced Damage in Optical Materials: 2006 vol. 6403 640311 (2006).
[126] Zeng, T., Zhu, M., Chai, Y., Li, J. & Shao, J. Dichroic laser mirrors with mixture layers and sandwich-like-structure interfaces. Photonics Res. 9, 229 (2021). doi: 10.1364/PRJ.411372
[127] Shi, J. et al. Effect of annealing on the properties of HfO2-Al2O3 mixture coatings for picosecond laser applications. Appl. Surf. Sci. 579, 152192 (2022). doi: 10.1016/j.apsusc.2021.152192
[128] Ghazaryan, L. et al. Structural, optical, and mechanical properties of TiO2nanolaminates. Nanotechnology 32, 95709 (2021). doi: 10.1088/1361-6528/abcbc1
[129] Willemsen, T., Jupé, M., Gallais, L., Tetzlaff, D. & Ristau, D. Tunable optical properties of amorphous Tantala layers in a quantizing structure. Opt. Lett. 42, 4502 (2017). doi: 10.1364/OL.42.004502
[130] Schwyn Thöny, S. et al. Magnetron sputter deposition of Ta 2 O 5 -SiO 2 quantized nanolaminates. Opt. Express 31, 15825 (2023). doi: 10.1364/OE.487892
[131] Qiao, Z., Ma, P., Liu, H., Pu, Y. & Liu, Z. Laser-induced damage of rugate and quarter-wave stacks high reflectors deposited by ion-beam sputtering. Opt. Eng. 52, 086103 (2013). doi: 10.1117/1.OE.52.8.086103
[132] Du, W. et al. Plate laser beam splitter with mixture-based quarter-wave coating design. Opt. Laser Technol. 155, 108399 (2022). doi: 10.1016/j.optlastec.2022.108399
[133] Shuai, K. et al. Nanosecond laser conditioning of multilayer dielectric gratings for picosecond–petawatt laser systems. High Power Laser Sci. Eng. 11, (2023).
[134] McCauley, J., Jupé, M., Zhang, J., Wienke, A. & Ristau, D. Reduction of nanoparticles in optical thin films through ion etching. Appl. Opt. 62, B117 (2023). doi: 10.1364/AO.478263
[135] Stolz, C. J. et al. High laser-resistant multilayer mirrors by nodular defect planarization [Invited]. Appl. Opt. 53, A291 (2014). doi: 10.1364/AO.53.00A291
[136] Liu, T. et al. A nodule dome removal strategy to improve the laser-induced damage threshold of coatings. High Power Laser Sci. Eng. 10, 0-8 (2022).
[137] Liu, F. et al. Influence of the surface and subsurface contaminants on laser-induced damage threshold of anti-reflection sub-wavelength structures working at 1064 nm. Opt. Laser Technol. 127, 106144 (2020). doi: 10.1016/j.optlastec.2020.106144
[138] Cheng, X. et al. Improvement to the LIDT of high-reflection coatings by planarization of nodular defects. in Advances in Optical Thin Films VI (eds. Lequime, M. , Macleod, H. A. & Ristau, D. ) vol. 10691 58 (SPIE, 2018).
[139] Chen, S. , Sheng, B. , Xu, X. & Fu, S. Wet-cleaning of contaminants on the surface of multilayer dielectric pulse compressor gratings by the Piranha solution. in 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies (eds. Yang, L. , Namba, Y. , Walker, D. D. & Li, S. ) vol. 7655 765522 (2010).
[140] Zhu, M. et al. Improving the laser-induced damage threshold of 532-nm antireflection coating using plasma ion cleaning. Opt. Eng. 56, 011003 (2016). doi: 10.1117/1.OE.56.1.011003
[141] Tikhonravov, A. V., Trubetskov, M. K. & DeBell, G. W. Application of the needle optimization technique to the design of optical coatings. Appl. Opt. 35, 5493 (1996). doi: 10.1364/AO.35.005493
[142] Sullivan, B. T. & Dobrowolski, J. A. Implementation of a numerical needle method for thin-film design. Appl. Opt. 35, 5484 (1996). doi: 10.1364/AO.35.005484
[143] Han, J. H. Efficient inverse design of optical multilayer nano-thin films using neural network principles: backpropagation and gradient descent. Nanoscale 23, (2024).
[144] Jiang, A., Osamu, Y. & Chen, L. Multilayer optical thin film design with deep Q learning. Sci. Rep. 10, 1-7 (2020). doi: 10.1038/s41598-019-56847-4
[145] Martin, S., Rivory, J. & Schoenauer, M. Synthesis of optical multilayer systems using genetic algorithms. Appl. Opt. 34, 2247 (1995). doi: 10.1364/AO.34.002247
[146] Yang, C. et al. Design of reflective color filters with high angular tolerance by particle swarm optimization method. Opt. Express 21, 9315 (2013). doi: 10.1364/OE.21.009315
[147] Guo, X. et al. Design of broadband omnidirectional antireflection coatings using ant colony algorithm. Opt. Express 22, A1137 (2014). doi: 10.1364/OE.22.0A1137
[148] Lininger, A., Hinczewski, M. & Strangi, G. General Inverse Design of Layered Thin-Film Materials with Convolutional Neural Networks. ACS Photonics 8, 3641-3650 (2021). doi: 10.1021/acsphotonics.1c01498
[149] Chopra, K. N. Minimization of Scattering Loss of Dielectric Mirrors BT - Optoelectronic Gyroscopes: Design and Applications. in (ed. Chopra, K. N. ) 61–68 (Springer Singapore, 2021). doi: 10.1007/978-981-15-8380-3_3.
[150] Nelson, K. D. et al. Reducing Noise in a Ring-laser Gyro Based on Stimulated Brillouin Scattering. Inert. 2019 - 6th IEEE Int. Symp. Inert. Sensors Syst. Proc. 2019–2021 (2019). doi: 10.1109/ISISS.2019.8739699.
[151] Accadia, T. et al. Performance of the Virgo interferometer longitudinal control system during the second science run. Astropart. Phys. 34, 521-527 (2011). doi: 10.1016/j.astropartphys.2010.11.006
[152] Newbury, N. R. Searching for applications with a fine-tooth comb. Nat. Photonics 5, 186-188 (2011). doi: 10.1038/nphoton.2011.38
[153] Skeldon, K. D., Mackintosh, J., Von Gradowski, M., Thieux, S. & Lee, R. Qualification of supermirrors for ring-laser-gyros based on surface roughness and scatter measurements. J. Opt. A Pure Appl. Opt. 3, 183-187 (2001). doi: 10.1088/1464-4258/3/3/305
[154] Harry, G. M. et al. Optical coatings for gravitational-wave detection. Photonics North 2004 Photonic Appl. Astron. Biomed. Imaging, Mater. Process. Educ. 5578, 60 (2004).
[155] Cho, H. J. , Shin, M. J. & Lee, J. C. Effects of substrate and deposition method onto the mirror scattering. Opt. InfoBase Conf. Pap. 5–7 (2004). doi: 10.1364/oic.2004.me6.
[156] Harvey, J. E. Modified Beckmann-Kirchhoff scattering model for rough surfaces with large incident and scattering angles. Opt. Eng. 46, 078002 (2007). doi: 10.1117/1.2752180
[157] Kozhevnikov, I. V. Analysis of X-ray scattering from a rough multilayer mirror in the first-order perturbation theory. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 498, 482-495 (2003). doi: 10.1016/S0168-9002(02)01994-0
[158] Moe, J. E. & Jackson, D. R. First-order perturbation solution for rough surface scattering cross section including the effects of gradients. J. Acoust. Soc. Am. 96, 1748-1754 (1994). doi: 10.1121/1.410253
[159] Trost, M. , Schröder, S. , Duparre, A. & Tünnermann, A. Scattering Reduction through Oblique Multilayer Deposition. in Optical Interference Coatings FC. 4 (OSA, 2013). doi: 10.1364/OIC.2013.FC.4.
[160] Zhang, J. et al. Interference suppression of light backscattering through oblique deposition of a layered reflecting coating: bi-layer on a substrate. Opt. Express 27, 15262 (2019). doi: 10.1364/OE.27.015262
[161] Peverini, L., Kozhevnikov, I. & Ziegler, E. Real-time X-ray reflectometry during thin-film processing. Phys. Status Solidi Appl. Mater. Sci. 204, 2785-2791 (2007).
[162] Zhang, M., Zhu, Y., Li, D., Feng, P. & Xu, C. An innovative method for preparation of sol–gel HfO2 films with high laser-induced damage threshold after high-temperature annealing. Appl. Surf. Sci. 554, 149615 (2021). doi: 10.1016/j.apsusc.2021.149615
[163] Chen, Y. , Fang, F. & Zhang, N. Advance in additive manufacturing of 2D materials at the atomic and close-to-atomic scale. npj 2D Mater. Appl. 8, (2024).
[164] Martínez-Puente, M. A. et al. ALD and PEALD deposition of HfO2 and its effects on the nature of oxygen vacancies. Mater. Sci. Eng. B 285, (2022).
[165] Shestaeva, S. et al. Mechanical, structural, and optical properties of PEALD metallic oxides for optical applications. Appl. Opt. 56, C47 (2017). doi: 10.1364/AO.56.000C47
[166] Lapteva, M. et al. Influence of temperature and plasma parameters on the properties of PEALD HfO 2. Opt. Mater. Express 11, 1918 (2021). doi: 10.1364/OME.422156
[167] Ratzsch, S., Kley, E. B., Tünnermann, A. & Szeghalmi, A. Inhibition of crystal growth during plasma enhanced atomic layer deposition by applying BIAS. Materials (Basel). 8, 7805-7812 (2015). doi: 10.3390/ma8115425
[168] Xu, C. et al. Preparation of high laser-induced damage threshold Ta 2 O 5 films. Appl. Surf. Sci. 309, 194-199 (2014). doi: 10.1016/j.apsusc.2014.05.009
[169] Zhang, D. et al. High laser-induced damage threshold HfO 2 films prepared by ion-assisted electron beam evaporation. Appl. Surf. Sci. 243, 232-237 (2005). doi: 10.1016/j.apsusc.2004.09.083
[170] Zhang, D. et al. Influence of substoichiometer on the laser-induced damage characters of HfO 2 thin films. Appl. Surf. Sci. 255, 4646-4649 (2009). doi: 10.1016/j.apsusc.2008.12.006
[171] Liu, X. et al. Preparation and patterning of HfO2 film via sol–gel method and resistive switching effect of Pt/HfO2/LaNiO3. Mater. Sci. Semicond. Process. 178, (2024).
[172] Vieu, C. et al. Electron beam lithography: Resolution limits and applications. Appl. Surf. Sci. 164, 111-117 (2000). doi: 10.1016/S0169-4332(00)00352-4
[173] Manfrinato, V. R. et al. Resolution limits of electron-beam lithography toward the atomic scale. Nano Lett. 13, 1555-1558 (2013). doi: 10.1021/nl304715p
[174] Mathurin, J. et al. Photothermal AFM-IR spectroscopy and imaging: Status, challenges, and trends. J. Appl. Phys. 131, (2022).
[175] Stanciu, S. G. et al. Scattering-type Scanning Near-Field Optical Microscopy of Polymer-Coated Gold Nanoparticles. ACS Omega 7, 11353-11362 (2022). doi: 10.1021/acsomega.2c00410
[176] Yan, Y., Wang, Y., Zhou, P., Huang, N. & Guo, D. Near-field microscopy inspection of nano scratch defects on the monocrystalline silicon surface. Precis. Eng. 56, 506-512 (2019). doi: 10.1016/j.precisioneng.2019.02.008
[177] Schröder, S. et al. Origins of light scattering from thin film coatings. Thin Solid Films 592, 248-255 (2015). doi: 10.1016/j.tsf.2015.02.077
[178] Kurouski, D., Dazzi, A., Zenobi, R. & Centrone, A. Infrared and Raman chemical imaging and spectroscopy at the nanoscale. Chem. Soc. Rev. 49, 3315-3347 (2020). doi: 10.1039/C8CS00916C
[179] Herffurth, T., Schröder, S., Trost, M., Duparré, A. & Tünnermann, A. Comprehensive nanostructure and defect analysis using a simple 3D light-scatter sensor. Appl. Opt. 52, 3279-3287 (2013). doi: 10.1364/AO.52.003279
[180] Munser, A. et al. Non-destructive testing of subsurface damage for early indication of laser-induced damage threshold in fused silica. in Laser-Induced Damage in Optical Materials 2022 (eds. Carr, C. W. , Ristau, D. & Menoni, C. S. ) vol. 12300 48 (SPIE, 2022).
[181] Herffurth, T. et al. Assessing surface imperfections of freeforms using a robotic light scattering sensor. Opt. Eng. 58, 1 (2019).
[182] Sun, H., Tan, W., Ruan, Y. X., Bai, L. & Xu, J. F. Surface roughness classification using light scattering matrix and deep learning. Sci. China Technol. Sci. 67, 520-535 (2024). doi: 10.1007/s11431-023-2545-8