[1] |
Tong, L. M. et al. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426, 816-819 (2003). doi: 10.1038/nature02193 |
[2] |
Brambilla, G. et al. Optical fiber nanowires and microwires: fabrication and applications. Advances in Optics and Photonics 1, 107-161 (2009). doi: 10.1364/AOP.1.000107 |
[3] |
Wu, X. Q. & Tong, L. M. Optical microfibers and nanofibers. Nanophotonics 2, 407-428 (2013). doi: 10.1515/nanoph-2013-0033 |
[4] |
Tong, L. M., Lou, J. Y. & Mazur, E. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Optics Express 12, 1025-1035 (2004). doi: 10.1364/OPEX.12.001025 |
[5] |
Zhang, J. B. et al. High-power continuous-wave optical waveguiding in a silica micro/nanofibre. Light:Science & Applications 12, 89 (2023). |
[6] |
Guo, X. et al. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Letters 9, 4515-4519 (2009). doi: 10.1021/nl902860d |
[7] |
Cai, L., Pan, J. Y. & Hu, S. Overview of the coupling methods used in whispering gallery mode resonator systems for sensing. Optics and Lasers in Engineering 127, 105968 (2020). doi: 10.1016/j.optlaseng.2019.105968 |
[8] |
Jin, Y. Y. et al. Efficient fiber-to-chip interface via an intermediated CdS nanowire. Laser & Photonics Reviews 17, 2200919 (2023). |
[9] |
Leon-Saval, S. G. et al. Supercontinuum generation in submicron fibre waveguides. Optics Express 12, 2864-2869 (2004). doi: 10.1364/OPEX.12.002864 |
[10] |
Beugnot, J. C. et al. Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre. Nature Communications 5, 5242 (2014). doi: 10.1038/ncomms6242 |
[11] |
Jiang, B. Q. et al. High-efficiency second-order nonlinear processes in an optical microfibre assisted by few-layer GaSe. Light:Science & Applications 9, 63 (2020). |
[12] |
Hao, Z. et al. Broadband and continuous wave pumped second-harmonic generation from microfiber coated with layered GaSe crystal. Opto-Electronic Advances 6, 230012 (2023). doi: 10.29026/oea.2023.230012 |
[13] |
Li, H. T. et al. Single-molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface. Science Advances 5, eaax4659 (2019). doi: 10.1126/sciadv.aax4659 |
[14] |
Cao, Z. X. et al. Biochemical sensing in graphene-enhanced microfiber resonators with individual molecule sensitivity and selectivity. Light:Science & Applications 8, 107 (2019). |
[15] |
Zhang, L. F. et al. A ZnO nanowire-based microfiber coupler for all-optical photodetection applications. Nanoscale 11, 8319-8326 (2019). doi: 10.1039/C9NR02040C |
[16] |
Yang, L. Y. et al. Highly sensitive and miniature microfiber-based ultrasound sensor for photoacoustic tomography. Opto-Electronic Advances 5, 200076 (2022). doi: 10.29026/oea.2022.200076 |
[17] |
Sagué, G. et al. Cold-atom physics using ultrathin optical fibers: light-induced dipole forces and surface interactions. Physical Review Letters 99, 163602 (2007). doi: 10.1103/PhysRevLett.99.163602 |
[18] |
Solano, P. et al. Super-radiance reveals infinite-range dipole interactions through a nanofiber. Nature Communications 8, 1857 (2017). doi: 10.1038/s41467-017-01994-3 |
[19] |
Lamsal, H. P., Franson, J. D. & Pittman, T. B. Transmission characteristics of optical nanofibers in metastable xenon. Applied Optics 58, 6470-6473 (2019). doi: 10.1364/AO.58.006470 |
[20] |
Gu, F. X. et al. Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering. Light:Science & Applications 6, e17061 (2017). |
[21] |
Ding, Z. X. et al. All-fiber ultrafast laser generating gigahertz-rate pulses based on a hybrid plasmonic microfiber resonator. Advanced Photonics 2, 026002 (2020). |
[22] |
Nayak, K. P. et al. Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence. Optics Express 15, 5431-5438 (2007). doi: 10.1364/OE.15.005431 |
[23] |
She, W. L., Yu, J. H. & Feng, R. H. Observation of a push force on the end face of a nanometer silica filament exerted by outgoing light. Physical Review Letters 101, 243601 (2008). doi: 10.1103/PhysRevLett.101.243601 |
[24] |
Cheng, C. et al. Surface enhanced Raman scattering of gold nanoparticles aggregated by a gold-nanofilm-coated nanofiber. Photonics Research 6, 357-362 (2018). doi: 10.1364/PRJ.6.000357 |
[25] |
Fujiwara, H. et al. Optical selection and sorting of nanoparticles according to quantum mechanical properties. Science Advances 7, eabd9551 (2021). doi: 10.1126/sciadv.abd9551 |
[26] |
Tong, L. M. Micro/nanofibre optical sensors: challenges and prospects. Sensors 18, 903 (2018). doi: 10.3390/s18030903 |
[27] |
Sumetsky, M., Dulashko, Y. & Hale, A. Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer. Optics Express 12, 3521-3531 (2004). doi: 10.1364/OPEX.12.003521 |
[28] |
Ward, J. M. et al. Contributed Review: optical micro- and nanofiber pulling rig. Review of Scientific Instruments 85, 111501 (2014). doi: 10.1063/1.4901098 |
[29] |
Hoffman, J. E. et al. Rayleigh scattering in an optical nanofiber as a probe of higher-order mode propagation. Optica 2, 416-423 (2015). doi: 10.1364/OPTICA.2.000416 |
[30] |
Xu, Y. X., Fang, W. & Tong, L. M. Real-time control of micro/nanofiber waist diameter with ultrahigh accuracy and precision. Optics Express 25, 10434-10440 (2017). doi: 10.1364/OE.25.010434 |
[31] |
Chen, J. et al. Real-time measurement and control of nanofiber diameters using a femtowatt photodetector. Optics Express 30, 12008-12013 (2022). doi: 10.1364/OE.453599 |
[32] |
Jia, Q. N. et al. Fibre tapering using plasmonic microheaters and deformation-induced pull. Light:Advanced Manufacturing 4, 5 (2023). |
[33] |
Hoffman, J. E. et al. Ultrahigh transmission optical nanofibers. AIP Advances 4, 067124 (2014). doi: 10.1063/1.4879799 |
[34] |
Kang, Y. et al. Ultrahigh-precision diameter control of nanofiber using direct mode cutoff feedback. IEEE Photonics Technology Letters 32, 219-222 (2020). doi: 10.1109/LPT.2020.2966804 |
[35] |
Huang, K. J., Yang, S. Y. & Tong, L. M. Modeling of evanescent coupling between two parallel optical nanowires. Applied Optics 46, 1429-1434 (2007). doi: 10.1364/AO.46.001429 |
[36] |
Yu, X. C. et al. Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment. Advanced Materials 26, 7462-7467 (2014). doi: 10.1002/adma.201402085 |
[37] |
Kien, F. L. et al. Coupling between guided modes of two parallel nanofibers. New Journal of Physics 22, 123007 (2020). doi: 10.1088/1367-2630/abc8af |
[38] |
Shao, L. Q. et al. Twin-nanofiber structure for a highly efficient single-photon collection. Optics Express 30, 9147-9155 (2022). doi: 10.1364/OE.454616 |
[39] |
Shao, L. Q. et al. Experimental demonstration of a compact variable single-mode fiber coupler based on microfiber. IEEE Photonics Technology Letters 33, 687-690 (2021). doi: 10.1109/LPT.2021.3088454 |
[40] |
Daly, M. et al. Nanostructured optical nanofibres for atom trapping. New Journal of Physics 16, 053052 (2014). doi: 10.1088/1367-2630/16/5/053052 |
[41] |
Ke, Y. G. et al. Topological phase transitions and Thouless pumping of light in photonic waveguide arrays. Laser & Photonics Reviews 10, 995-1001 (2016). |
[42] |
Zhang, L. et al. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electronic Advances 3, 190022 (2020). |
[43] |
Ma, S. Q. et al. Optical micro/nano fibers enabled smart textiles for human–machine interface. Advanced Fiber Materials 4, 1108-1117 (2022). doi: 10.1007/s42765-022-00163-6 |
[44] |
Cen, Q. Q. et al. Microtaper leaky-mode spectrometer with picometer resolution. eLight 3, 9 (2023). doi: 10.1186/s43593-023-00041-7 |
[45] |
Paek, U. C., Schroeder, C. M. & Kurkjian, C. R. Determination of the viscosity of high silica glasses during fibre drawing. Glass Technology 29, 263-266 (1988). |
[46] |
Choudhury, S. R. & Jaluria, Y. Practical aspects in the drawing of an optical fiber. Journal of Materials Research 13, 483-493 (1998). doi: 10.1557/JMR.1998.0063 |
[47] |
Paek, U. C. & Runk, R. B. Physical behavior of the neck‐down region during furnace drawing of silica fibers. Journal of Applied Physics 49, 4417-4422 (1978). doi: 10.1063/1.325495 |
[48] |
Wei, Z. Y. et al. Free surface flow in high speed fiber drawing with large-diameter glass preforms. Journal of Heat Transfer 126, 713-722 (2004). doi: 10.1115/1.1795237 |
[49] |
Hoffmann, P., Dutoit, B. & Salathé, R. P. Comparison of mechanically drawn and protection layer chemically etched optical fiber tips. Ultramicroscopy 61, 165-170 (1995). doi: 10.1016/0304-3991(95)00122-0 |
[50] |
Valaskovic, G. A., Holton, M. & Morrison, G. H. Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes. Applied Optics 34, 1215-1228 (1995). doi: 10.1364/AO.34.001215 |
[51] |
Lazarev, A. et al. Formation of fine near-field scanning optical microscopy tips. Part II. By laser-heated pulling and bending. Review of Scientific Instruments 74, 3684-3688 (2003). |
[52] |
Xue, S. C. et al. Theoretical, numerical, and experimental analysis of optical fiber tapering. Journal of Lightwave Technology 25, 1169-1176 (2007). doi: 10.1109/JLT.2007.893028 |
[53] |
Ding, L. et al. Ultralow loss single-mode silica tapers manufactured by a microheater. Applied Optics 49, 2441-2445 (2010). doi: 10.1364/AO.49.002441 |
[54] |
Ma, C. J. et al. Design and fabrication of tapered microfiber waveguide with good optical and mechanical performance. Journal of Modern Optics 61, 683-687 (2014). doi: 10.1080/09500340.2014.909541 |
[55] |
Angell, C. A. Perspective on the glass transition. Journal of Physics and Chemistry of Solids 49, 863-871 (1988). doi: 10.1016/0022-3697(88)90002-9 |
[56] |
Lee, S. H. K. & Jaluria, Y. Effects of variable properties and viscous dissipation during optical fiber drawing. Journal of Heat Transfer 118, 350-358 (1996). doi: 10.1115/1.2825851 |
[57] |
Vu, A. T. et al. Modeling of thermo-viscoelastic material behavior of glass over a wide temperature range in glass compression molding. Journal of the American Ceramic Society 103, 2791-2807 (2020). doi: 10.1111/jace.16963 |
[58] |
Schnaas, A. & Grabke, H. J. High-temperature corrosion and creep of Ni-Cr-Fe alloys in carburizing and oxidizing environments. Oxidation of Metals 12, 387-404 (1978). doi: 10.1007/BF00612086 |
[59] |
Kodentsov, A. A. et al. High-temperature nitridation of Ni-Cr alloys. Metallurgical and Materials Transactions A 27, 59-69 (1996). doi: 10.1007/BF02647747 |