[1] Bi, C. et al. Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing. J. Mater. Chem. A 2, 18508-18514 (2014). doi: 10.1039/C4TA04007D
[2] Fang, Y. J. et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 9, 679-686 (2015). doi: 10.1038/nphoton.2015.156
[3] De Arquer, F. P. G. et al. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 16100 (2017). doi: 10.1038/natrevmats.2016.100
[4] Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780-793 (2014). doi: 10.1038/nnano.2014.215
[5] Maria, A. et al. Solution-processed infrared photovoltaic devices with > 10% monochromatic internal quantum efficiency. Appl. Phys. Lett. 87, 213112 (2005). doi: 10.1063/1.2135868
[6] Xie, Y. M. et al. Broad-spectral-response nanocarbon bulk-heterojunction excitonic photodetectors. Adv. Mater. 25, 3433-3437 (2013). doi: 10.1002/adma.201300292
[7] Long, M. S. et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 13, 2511-2519 (2019).
[8] Zhou, X. K., Yang, D. Z. & Ma, D. G. Extremely low dark current, high responsivity, all-Polymer photodetectors with spectral response from 300 nm to 1000 nm. Adv. Optical Mater. 3, 1570-1576 (2015). doi: 10.1002/adom.201500224
[9] Dong, R. et al. An ultraviolet-to-NIR broad spectral nanocomposite photodetector with gain. Adv. Optical Mater. 2, 549-554 (2014). doi: 10.1002/adom.201400023
[10] Simone, G. et al. Organic photodetectors and their application in large area and flexible image sensors: the role of dark current. Adv. Funct. Mater., https://doi.org/10.1002/adfm.201904205 (2019).
[11] Dou, L. T. et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014). doi: 10.1038/ncomms6404
[12] Fang, Y. J. & Huang, J. S. Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Adv. Mater. 27, 2804-2810 (2015). doi: 10.1002/adma.201500099
[13] Sutherland, B. R. et al. Sensitive, fast, and stable perovskite photodetectors exploiting interface engineering. ACS Photonics 2, 1117-1123 (2015). doi: 10.1021/acsphotonics.5b00164
[14] Shen, L. et al. A self-powered, sub-nanosecond-response solution-processed hybrid perovskite photodetector for time-resolved photoluminescence-lifetime detection. Adv. Mater. 28, 10794-10800 (2016). doi: 10.1002/adma.201603573
[15] Shen, L. et al. A highly sensitive narrowband nanocomposite photodetector with gain. Adv. Mater. 28, 2043-2048 (2016). doi: 10.1002/adma.201503774
[16] Shen, L. et al. Integration of perovskite and polymer photoactive layers to produce ultrafast response, ultraviolet-to-near-infrared, sensitive photodetectors. Mater. Horiz. 4, 242-248 (2017). doi: 10.1039/C6MH00508J
[17] Guo, F. W. et al. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol. 7, 798-802 (2012). doi: 10.1038/nnano.2012.187
[18] Dong, R. et al. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Adv. Mater. 27, 1912-1918 (2015). doi: 10.1002/adma.201405116
[19] Gong, X. et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325, 1665-1667 (2009). doi: 10.1126/science.1176706
[20] Zimmerman, J. D. et al. Porphyrin-tape/C60 organic photodetectors with 6.5% external quantum efficiency in the near infrared. Adv. Mater. 22, 2780-2783 (2010). doi: 10.1002/adma.200904341
[21] Yang, W. S. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376-1379 (2017). doi: 10.1126/science.aan2301
[22] Tan, H. R. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722-726 (2017). doi: 10.1126/science.aai9081
[23] Jeon, N. J. et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 3, 682-689 (2018). doi: 10.1038/s41560-018-0200-6
[24] Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945-947 (1999). doi: 10.1126/science.286.5441.945
[25] Kojima, A. et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050-6051 (2009). doi: 10.1021/ja809598r
[26] Heo, J. H. et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7, 486-491 (2013). doi: 10.1038/nphoton.2013.80
[27] Chen, Q. et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622-625 (2014). doi: 10.1021/ja411509g
[28] Tan, Z. K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687-692 (2014). doi: 10.1038/nnano.2014.149
[29] Chin, X. Y. et al. Lead iodide perovskite light-emitting field-effect transistor. Nat. Commun. 6, 7383 (2015). doi: 10.1038/ncomms8383
[30] Adinolfi, V. et al. Fast and sensitive solution-processed visible-blind perovskite UV photodetectors. Adv. Mater. 28, 7264-7268 (2016). doi: 10.1002/adma.201601196
[31] Shrestha, S. et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat. Photonics 11, 436-440 (2017). doi: 10.1038/nphoton.2017.94
[32] Ka, I. et al. High-performance nanotube-enhanced perovskite photodetectors. Sci. Rep. 7, 45543 (2017). doi: 10.1038/srep45543
[33] Wu, X. H. et al. Distinguishable detection of ultraviolet, visible, and infrared spectrum with high-responsivity perovskite-based flexible photosensors. Small 14, 1800527 (2018). doi: 10.1002/smll.201800527
[34] Kim, Y. C. et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550, 87-91 (2017). doi: 10.1038/nature24032
[35] Wu, G. et al. Perovskite/organic bulk-heterojunction integrated ultrasensitive broadband photodetectors with High near-infrared external quantum efficiency over 70%. Small 14, 1802349 (2018). doi: 10.1002/smll.201802349
[36] Wang, Y. K. et al. Perovskite/polymer hybrid thin films for high external quantum efficiency photodetectors with wide spectral response from visible to near-infrared wavelengths. Adv. Optical Mater. 5, 1700213 (2017). doi: 10.1002/adom.201700213
[37] Bi, D. Q. et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2, e1501170 (2016). doi: 10.1126/sciadv.1501170
[38] Park, N. G. et al. Towards stable and commercially available perovskite solar cells. Nat. Energy 1, 16152 (2016). doi: 10.1038/nenergy.2016.152
[39] Correa-Baena, J. P. et al. Promises and challenges of perovskite solar cells. Science 358, 739-744 (2017). doi: 10.1126/science.aam6323
[40] Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 8, 506-514 (2014). doi: 10.1038/nphoton.2014.134
[41] Saidaminov, M. I. et al. Perovskite photodetectors operating in both narrowband and broadband regimes. Adv. Mater. 28, 8144-8149 (2016). doi: 10.1002/adma.201601235
[42] Sun, H. X. et al. Ultrahigh-performance self-Powered flexible double-twisted fibrous broadband perovskite photodetector. Adv. Mater. 30, 1706986 (2018). doi: 10.1002/adma.201706986
[43] Dai, S. X. et al. Enhancing the performance of polymer solar cells via core engineering of NIR-absorbing electron acceptors. Adv. Mater. 30, 1706571 (2018). doi: 10.1002/adma.201706571
[44] Yao, H. F. et al. Design and synthesis of a low bandgap small molecule acceptor for efficient polymer solar cells. Adv. Mater. 28, 8283-8287 (2016). doi: 10.1002/adma.201602642
[45] Yao, H. F. et al. Design, synthesis, and photovoltaic characterization of a small molecular acceptor with an ultra-narrow band gap. Angew. Chem. Int. Ed. 56, 3045-3049 (2017). doi: 10.1002/anie.201610944
[46] Kim, J. et al. Excitation density dependent photoluminescence quenching and charge transfer efficiencies in hybrid perovskite/organic semiconductor bilayers. Adv. Energy Mater. 8, 1802474 (2018). doi: 10.1002/aenm.201802474
[47] Wolff, C. M. et al. Reduced interface-mediated recombination for high open-circuit voltages in CH3NH3PbI3 solar cells. Adv. Mater. 29, 1700159 (2017). doi: 10.1002/adma.201700159
[48] Wei, H. T. et al. Trap engineering of CdTe nanoparticle for high gain, fast response, and low noise P3HT:CdTe nanocomposite photodetectors. Adv. Mater. 27, 4975-4981 (2015). doi: 10.1002/adma.201502292
[49] Fang, Y. J. et al. Large gain, low noise nanocomposite ultraviolet photodetectors with a linear dynamic range of 120 dB. Adv. Optical Mater. 2, 348-353 (2014). doi: 10.1002/adom.201300530
[50] Ullbrich, S. et al. Fast organic near-infrared photodetectors based on charge-transfer absorption. J. Phys. Chem. Lett. 8, 5621-5625 (2017). doi: 10.1021/acs.jpclett.7b02571
[51] Lee, S. J. et al. A monolithically integrated plasmonic infrared quantum dot camera. Nat. Commun. 2, 286 (2011). doi: 10.1038/ncomms1283
[52] Wilkins, S. W. et al. Phase-contrast imaging using polychromatic hard X-rays. Nature 384, 335-338 (1996). doi: 10.1038/384335a0
[53] Gu, L. L. et al. 3D Arrays of 1024-pixel image sensors based on lead halide perovskite nanowires. Adv. Mater. 28, 9713-9721 (2016). doi: 10.1002/adma.201601603
[54] Deng, W. et al. Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability. Adv. Mater. 28, 2201-2208 (2016). doi: 10.1002/adma.201505126
[55] Wang, P. et al. Arrayed van der Waals broadband detectors for dual-band detection. Adv. Mater. 29, 1604439 (2017). doi: 10.1002/adma.201604439