[1] |
Park, Y., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nat. Photonics 12, 578–589 (2018). doi: 10.1038/s41566-018-0253-x |
[2] |
Merola, F. et al. Diagnostic tools for lab-on-chip applications based on coherent imaging microscopy. Proc. IEEE 103, 192–204 (2015). doi: 10.1109/JPROC.2014.2375374 |
[3] |
Cotte, Y. et al. Marker-free phase nanoscopy. Nat. Photonics 7, 113–117 (2013). doi: 10.1038/nphoton.2012.329 |
[4] |
Dardikman-Yoffe, G. et al. High-resolution 4-D acquisition of freely swimming human sperm cells without staining. Sci. Adv. 6, eaay7619 (2020). doi: 10.1126/sciadv.aay7619 |
[5] |
Kemper, B. et al. Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy. J. Biomed. Opt. 15, 036009 (2010). doi: 10.1117/1.3431712 |
[6] |
Zhang, Y. B. et al. Motility-based label-free detection of parasites in bodily fluids using holographic speckle analysis and deep learning. Light. : Sci. Appl. 7, 108 (2018). doi: 10.1038/s41377-018-0110-1 |
[7] |
Bianco, V. et al. Endowing a plain fluidic chip with micro-optics: a holographic microscope slide. Light. : Sci. Appl. 6, e17055 (2017). doi: 10.1038/lsa.2017.55 |
[8] |
Bianco, V. et al. Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector. Lab Chip 15, 2117–2124 (2015). doi: 10.1039/C5LC00143A |
[9] |
Mugnano, M. et al. Label-free optical marker for red-blood-cell phenotyping of inherited anemias. Anal. Chem. 90, 7495–7501 (2018). doi: 10.1021/acs.analchem.8b01076 |
[10] |
Mudanyali, O. et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip 10, 1417–1428 (2010). doi: 10.1039/c000453g |
[11] |
Moon, I. et al. Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells. Opt. Express 20, 10295–10309 (2012). doi: 10.1364/OE.20.010295 |
[12] |
Bianco, V. et al. Microplastic identification via holographic imaging and machine learning. Adv. Intell. Syst. 2, 1900153 (2020). doi: 10.1002/aisy.201900153 |
[13] |
Göröcs, Z. et al. In-line color digital holographic microscope for water quality measurements. in Proceedings of SPIE, Laser Applications in Life Sciences (SPIE, 2010). |
[14] |
Cacace, T. et al. Compact off-axis holographic slide microscope: design guidelines. Biomed. Opt. Express 11, 2511–2532 (2020). doi: 10.1364/BOE.11.002511 |
[15] |
Dardikman, G. & Shaked, N. T. Review on methods of solving the refractive index–thickness coupling problem in digital holographic microscopy of biological cells. Opt. Commun. 422, 8–16 (2018). doi: 10.1016/j.optcom.2017.11.084 |
[16] |
Kim, K. et al. High-resolution three-dimensional imaging of red blood cells parasitized by plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography. J. Biomed. Opt. 19, 011005 (2014). http://europepmc.org/abstract/med/23797986 |
[17] |
Lee, K. R. et al. Low-coherent optical diffraction tomography by angle-scanning illumination. J. Biophotonics 12, e201800289 (2019). http://www.researchgate.net/publication/331505936_Low-coherent_optical_diffraction_tomography_by_angle-scanning_illumination_Conference_Presentation |
[18] |
Vinoth, B. et al. Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution. Sci. Rep. 8, 5943 (2018). doi: 10.1038/s41598-018-24408-w |
[19] |
Park, S. et al. Label-free tomographic imaging of lipid droplets in foam cells for machine-learning-assisted therapeutic evaluation of targeted nanodrugs. ACS Nano 14, 1856–1865 (2020). doi: 10.1021/acsnano.9b07993 |
[20] |
Pirone, D. et al. Three-dimensional quantitative intracellular visualization of graphene oxide nanoparticles by tomographic flow cytometry. Nano Lett. https://doi.org/10.1021/acs.nanolett.1c00868 (2021). |
[21] |
Kamilov, U. S. et al. Learning approach to optical tomography. Optica 2, 517–522 (2015). doi: 10.1364/OPTICA.2.000517 |
[22] |
Merola, F. et al. Tomographic flow cytometry by digital holography. Light. : Sci. Appl. 6, e16241 (2017). doi: 10.1038/lsa.2016.241 |
[23] |
Soubies, E., Pham, T. A. & Unser, M. Efficient inversion of multiple-scattering model for optical diffraction tomography. Opt. Express 25, 21786–21800 (2017). doi: 10.1364/OE.25.021786 |
[24] |
G. Popescu. Label-free tomography of strongly scattering specimens. OSA Technical Digest (online) (Optical Society of America, 2017), Digital Holography and Three-Dimensional Imaging 2017, JeJu Island Republic of Korea (2017). |
[25] |
Lim, J. et al. High-fidelity optical diffraction tomography of multiple scattering samples. Light. : Sci. Appl. 8, 82 (2019). doi: 10.1038/s41377-019-0195-1 |
[26] |
Hu, C. F. et al. Harmonic optical tomography of nonlinear structures. Nat. Photonics 14, 564–569 (2020). doi: 10.1038/s41566-020-0638-5 |
[27] |
Bianco, V. et al. Resolution gain in space–time digital holography by self-assembling of the object frequencies. Opt. Lett. 43, 4248–4251 (2018). doi: 10.1364/OL.43.004248 |
[28] |
Micó, V., Ferreira, C. & García, J. Surpassing digital holography limits by lensless object scanning holography. Opt. Express 20, 9382–9395 (2012). doi: 10.1364/OE.20.009382 |
[29] |
Montrésor, S. et al. Comparative study of multi-look processing for phase map de-noising in digital Fresnel holographic interferometry. J. Optical Soc. Am. A 36, A59–A66 (2019). doi: 10.1364/JOSAA.36.000A59 |
[30] |
Farhadi, A. et al. Genetically encoded phase contrast agents for digital holographic microscopy. Nano Lett. 20, 8127–8134 (2020). doi: 10.1021/acs.nanolett.0c03159 |
[31] |
Rommel, C. E. et al. Contrast-enhanced digital holographic imaging of cellular structures by manipulating the intracellular refractive index. J. Biomed. Opt. 15, 041509 (2010). doi: 10.1117/1.3449567 |
[32] |
Wang, Z. et al. Long-term holographic phase-contrast time lapse reveals cytoplasmic circulation in dehydrating plant cells. Appl. Opt. 58, 7416–7423 (2019). doi: 10.1364/AO.58.007416 |
[33] |
Ghaffari, H., Saidi, M. S. & Firoozabadi, B. Biomechanical analysis of actin cytoskeleton function based on a spring network cell model. Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 231, 1308–1323 (2017). doi: 10.1177/0954406216668546 |
[34] |
Lang, I. et al. Plasmolysis: loss of turgor and beyond. Plants 3, 583–593 (2014). doi: 10.3390/plants3040583 |
[35] |
Lang-Pauluzzi, I. & Gunning, B. E. S. A plasmolytic cycle: the fate of cytoskeletal elements. Protoplasma 212, 174–185 (2000). doi: 10.1007/BF01282918 |
[36] |
Cheng, X. H. et al. Plasmolysis-deplasmolysis causes changes in endoplasmic reticulum form, movement, flow, and cytoskeletal association. J. Exp. Bot. 68, 4075–4087 (2017). doi: 10.1093/jxb/erx243 |
[37] |
Memmolo, P. et al. Recent advances in holographic 3D particle tracking. Adv. Opt. Photonics 7, 713–755 (2015). doi: 10.1364/AOP.7.000713 |
[38] |
Merola, F. et al. Digital holography as a method for 3D imaging and estimating the biovolume of motile cells. Lab Chip 13, 4512–4516 (2013). doi: 10.1039/c3lc50515d |
[39] |
Woodhouse, F. G. & Goldstein, R. E. Cytoplasmic streaming in plant cells emerges naturally by microfilament self-organization. Proc. Natl Acad. Sci. USA 110, 14132–14137 (2013). doi: 10.1073/pnas.1302736110 |
[40] |
Goldstein, R. E. & van de Meent, J. W. A physical perspective on cytoplasmic streaming. Interface Focus 5, 20150030 (2015). doi: 10.1098/rsfs.2015.0030 |
[41] |
Zheng, M. Z. et al. The speed of mitochondrial movement is regulated by the cytoskeleton and myosin in Picea wilsonii pollen tubes. Planta 231, 779–791 (2010). doi: 10.1007/s00425-009-1086-0 |
[42] |
Porter, K. R. & Machado, R. D. Studies on the endoplasmic reticulum: IV. Its form and distribution during Mitosis in cells of onion root tip. J. Biophys. Biochem. Cytol. 7, 167–180 (1960). doi: 10.1083/jcb.7.1.167 |
[43] |
Sen, R. & Ghosh, S. Induction of premature mitosis in s-blocked onion cells. Cell Biol. Int. 22, 867–874 (1998). doi: 10.1006/cbir.1998.0315 |
[44] |
Huang, M. & Zhang, L. Association of the movement protein of alfalfa mosaic virus with the endoplasmic reticulum and its trafficking in epidermal cells of onion bulb scales. Mol. Plant-Microbe Interact. 12, 680–690 (1999). doi: 10.1094/MPMI.1999.12.8.680 |
[45] |
Minguez, A. & de la Espina, S. M. D. Immunological characterization of lamins in the nuclear matrix of onion cells. J. Cell Sci. 106, 431–439 (1993). doi: 10.1242/jcs.106.1.431 |
[46] |
Oparka, K. J. Plasmolysis: new insights into an old process. N. Phytologist 126, 571–591 (1994). doi: 10.1111/j.1469-8137.1994.tb02952.x |
[47] |
Choi, W. et al. Tomographic phase microscopy. Nat. Methods 4, 717–719 (2007). doi: 10.1038/nmeth1078 |
[48] |
Cruz, J. R. & de la Espina, S. M. D. Subnuclear compartmentalization and function of actin and nuclear Myosin I in plants. Chromosoma 118, 193–207 (2009). doi: 10.1007/s00412-008-0188-y |
[49] |
Liu, D. H. & Kottke, I. Subcellular localization of Cd in the root cells of Allium sativum by electron energy loss spectroscopy. J. Biosci. 28, 471–478 (2003). doi: 10.1007/BF02705121 |
[50] |
Naidoo, G. & Naidoo, K. Uptake of polycyclic aromatic hydrocarbons and their cellular effects in the mangrove Bruguiera gymnorrhiza. Mar. Pollut. Bull. 113, 193–199 (2016). doi: 10.1016/j.marpolbul.2016.09.012 |
[51] |
Fragoso-Soriano, R. J., Jiménez-García, L. F. & Vázquez-López, C. AFM study of cellular structure organelles of Lacandonia schismatica and visualization of images using the error signal. J. Adv. Microsc. Res. 6, 40–45 (2011). doi: 10.1166/jamr.2011.1053 |
[52] |
Barer, R. Determination of dry mass, thickness, solid and water concentration in living cells. Nature 172, 1097–1098 (1953). doi: 10.1038/1721097a0 |
[53] |
Popescu, G. et al. Optical imaging of cell mass and growth dynamics. Am. J. Physiol. -Cell Physiol. 295, C538–C544 (2008). doi: 10.1152/ajpcell.00121.2008 |
[54] |
Phillips, K. G., Jacques, S. L. & McCarty, O. J. T. Measurement of single cell refractive index, dry mass, volume, and density using a transillumination microscope. Phys. Rev. Lett. 109, 118105 (2012). doi: 10.1103/PhysRevLett.109.118105 |
[55] |
Schürmann, M. et al. Cell nuclei have lower refractive index and mass density than cytoplasm. J. Biophotonics 9, 1068–1076 (2016). doi: 10.1002/jbio.201500273 |
[56] |
Tamada, Y. et al. Optical property analyses of plant cells for adaptive optics microscopy. Int. J. Optomechatronics 8, 89–99 (2014). doi: 10.1080/15599612.2014.901455 |
[57] |
Läubli, N. F. et al. 3D manipulation and imaging of plant cells using acoustically activated microbubbles. Small Methods 3, 1800527 (2019). doi: 10.1002/smtd.201800527 |
[58] |
Kim, K. et al. Optical diffraction tomography techniques for the study of cell pathophysiology. J. Biomed. Photonics Eng. 2, 020201 (2016). http://www.journals.ssau.ru/index.php/JBPE/article/download/2994/2991 |
[59] |
Balasubramani, V. et al. Holographic tomography: techniques and biomedical applications [Invited]. Appl. Opt. 60, B65–B80 (2021). doi: 10.1364/AO.416902 |
[60] |
Schnars, U. & Jüptner, W. P. O. Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol. 13, R85–R101 (2002). doi: 10.1088/0957-0233/13/9/201 |