[1] Park, Y., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nat. Photonics 12, 578–589 (2018). doi: 10.1038/s41566-018-0253-x
[2] Merola, F. et al. Diagnostic tools for lab-on-chip applications based on coherent imaging microscopy. Proc. IEEE 103, 192–204 (2015). doi: 10.1109/JPROC.2014.2375374
[3] Cotte, Y. et al. Marker-free phase nanoscopy. Nat. Photonics 7, 113–117 (2013). doi: 10.1038/nphoton.2012.329
[4] Dardikman-Yoffe, G. et al. High-resolution 4-D acquisition of freely swimming human sperm cells without staining. Sci. Adv. 6, eaay7619 (2020). doi: 10.1126/sciadv.aay7619
[5] Kemper, B. et al. Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy. J. Biomed. Opt. 15, 036009 (2010). doi: 10.1117/1.3431712
[6] Zhang, Y. B. et al. Motility-based label-free detection of parasites in bodily fluids using holographic speckle analysis and deep learning. Light. : Sci. Appl. 7, 108 (2018). doi: 10.1038/s41377-018-0110-1
[7] Bianco, V. et al. Endowing a plain fluidic chip with micro-optics: a holographic microscope slide. Light. : Sci. Appl. 6, e17055 (2017). doi: 10.1038/lsa.2017.55
[8] Bianco, V. et al. Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector. Lab Chip 15, 2117–2124 (2015). doi: 10.1039/C5LC00143A
[9] Mugnano, M. et al. Label-free optical marker for red-blood-cell phenotyping of inherited anemias. Anal. Chem. 90, 7495–7501 (2018). doi: 10.1021/acs.analchem.8b01076
[10] Mudanyali, O. et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip 10, 1417–1428 (2010). doi: 10.1039/c000453g
[11] Moon, I. et al. Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells. Opt. Express 20, 10295–10309 (2012). doi: 10.1364/OE.20.010295
[12] Bianco, V. et al. Microplastic identification via holographic imaging and machine learning. Adv. Intell. Syst. 2, 1900153 (2020). doi: 10.1002/aisy.201900153
[13] Göröcs, Z. et al. In-line color digital holographic microscope for water quality measurements. in Proceedings of SPIE, Laser Applications in Life Sciences (SPIE, 2010).
[14] Cacace, T. et al. Compact off-axis holographic slide microscope: design guidelines. Biomed. Opt. Express 11, 2511–2532 (2020). doi: 10.1364/BOE.11.002511
[15] Dardikman, G. & Shaked, N. T. Review on methods of solving the refractive index–thickness coupling problem in digital holographic microscopy of biological cells. Opt. Commun. 422, 8–16 (2018). doi: 10.1016/j.optcom.2017.11.084
[16] Kim, K. et al. High-resolution three-dimensional imaging of red blood cells parasitized by plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography. J. Biomed. Opt. 19, 011005 (2014). http://europepmc.org/abstract/med/23797986
[17] Lee, K. R. et al. Low-coherent optical diffraction tomography by angle-scanning illumination. J. Biophotonics 12, e201800289 (2019). http://www.researchgate.net/publication/331505936_Low-coherent_optical_diffraction_tomography_by_angle-scanning_illumination_Conference_Presentation
[18] Vinoth, B. et al. Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution. Sci. Rep. 8, 5943 (2018). doi: 10.1038/s41598-018-24408-w
[19] Park, S. et al. Label-free tomographic imaging of lipid droplets in foam cells for machine-learning-assisted therapeutic evaluation of targeted nanodrugs. ACS Nano 14, 1856–1865 (2020). doi: 10.1021/acsnano.9b07993
[20] Pirone, D. et al. Three-dimensional quantitative intracellular visualization of graphene oxide nanoparticles by tomographic flow cytometry. Nano Lett. https://doi.org/10.1021/acs.nanolett.1c00868 (2021).
[21] Kamilov, U. S. et al. Learning approach to optical tomography. Optica 2, 517–522 (2015). doi: 10.1364/OPTICA.2.000517
[22] Merola, F. et al. Tomographic flow cytometry by digital holography. Light. : Sci. Appl. 6, e16241 (2017). doi: 10.1038/lsa.2016.241
[23] Soubies, E., Pham, T. A. & Unser, M. Efficient inversion of multiple-scattering model for optical diffraction tomography. Opt. Express 25, 21786–21800 (2017). doi: 10.1364/OE.25.021786
[24] G. Popescu. Label-free tomography of strongly scattering specimens. OSA Technical Digest (online) (Optical Society of America, 2017), Digital Holography and Three-Dimensional Imaging 2017, JeJu Island Republic of Korea (2017).
[25] Lim, J. et al. High-fidelity optical diffraction tomography of multiple scattering samples. Light. : Sci. Appl. 8, 82 (2019). doi: 10.1038/s41377-019-0195-1
[26] Hu, C. F. et al. Harmonic optical tomography of nonlinear structures. Nat. Photonics 14, 564–569 (2020). doi: 10.1038/s41566-020-0638-5
[27] Bianco, V. et al. Resolution gain in space–time digital holography by self-assembling of the object frequencies. Opt. Lett. 43, 4248–4251 (2018). doi: 10.1364/OL.43.004248
[28] Micó, V., Ferreira, C. & García, J. Surpassing digital holography limits by lensless object scanning holography. Opt. Express 20, 9382–9395 (2012). doi: 10.1364/OE.20.009382
[29] Montrésor, S. et al. Comparative study of multi-look processing for phase map de-noising in digital Fresnel holographic interferometry. J. Optical Soc. Am. A 36, A59–A66 (2019). doi: 10.1364/JOSAA.36.000A59
[30] Farhadi, A. et al. Genetically encoded phase contrast agents for digital holographic microscopy. Nano Lett. 20, 8127–8134 (2020). doi: 10.1021/acs.nanolett.0c03159
[31] Rommel, C. E. et al. Contrast-enhanced digital holographic imaging of cellular structures by manipulating the intracellular refractive index. J. Biomed. Opt. 15, 041509 (2010). doi: 10.1117/1.3449567
[32] Wang, Z. et al. Long-term holographic phase-contrast time lapse reveals cytoplasmic circulation in dehydrating plant cells. Appl. Opt. 58, 7416–7423 (2019). doi: 10.1364/AO.58.007416
[33] Ghaffari, H., Saidi, M. S. & Firoozabadi, B. Biomechanical analysis of actin cytoskeleton function based on a spring network cell model. Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 231, 1308–1323 (2017). doi: 10.1177/0954406216668546
[34] Lang, I. et al. Plasmolysis: loss of turgor and beyond. Plants 3, 583–593 (2014). doi: 10.3390/plants3040583
[35] Lang-Pauluzzi, I. & Gunning, B. E. S. A plasmolytic cycle: the fate of cytoskeletal elements. Protoplasma 212, 174–185 (2000). doi: 10.1007/BF01282918
[36] Cheng, X. H. et al. Plasmolysis-deplasmolysis causes changes in endoplasmic reticulum form, movement, flow, and cytoskeletal association. J. Exp. Bot. 68, 4075–4087 (2017). doi: 10.1093/jxb/erx243
[37] Memmolo, P. et al. Recent advances in holographic 3D particle tracking. Adv. Opt. Photonics 7, 713–755 (2015). doi: 10.1364/AOP.7.000713
[38] Merola, F. et al. Digital holography as a method for 3D imaging and estimating the biovolume of motile cells. Lab Chip 13, 4512–4516 (2013). doi: 10.1039/c3lc50515d
[39] Woodhouse, F. G. & Goldstein, R. E. Cytoplasmic streaming in plant cells emerges naturally by microfilament self-organization. Proc. Natl Acad. Sci. USA 110, 14132–14137 (2013). doi: 10.1073/pnas.1302736110
[40] Goldstein, R. E. & van de Meent, J. W. A physical perspective on cytoplasmic streaming. Interface Focus 5, 20150030 (2015). doi: 10.1098/rsfs.2015.0030
[41] Zheng, M. Z. et al. The speed of mitochondrial movement is regulated by the cytoskeleton and myosin in Picea wilsonii pollen tubes. Planta 231, 779–791 (2010). doi: 10.1007/s00425-009-1086-0
[42] Porter, K. R. & Machado, R. D. Studies on the endoplasmic reticulum: IV. Its form and distribution during Mitosis in cells of onion root tip. J. Biophys. Biochem. Cytol. 7, 167–180 (1960). doi: 10.1083/jcb.7.1.167
[43] Sen, R. & Ghosh, S. Induction of premature mitosis in s-blocked onion cells. Cell Biol. Int. 22, 867–874 (1998). doi: 10.1006/cbir.1998.0315
[44] Huang, M. & Zhang, L. Association of the movement protein of alfalfa mosaic virus with the endoplasmic reticulum and its trafficking in epidermal cells of onion bulb scales. Mol. Plant-Microbe Interact. 12, 680–690 (1999). doi: 10.1094/MPMI.1999.12.8.680
[45] Minguez, A. & de la Espina, S. M. D. Immunological characterization of lamins in the nuclear matrix of onion cells. J. Cell Sci. 106, 431–439 (1993). doi: 10.1242/jcs.106.1.431
[46] Oparka, K. J. Plasmolysis: new insights into an old process. N. Phytologist 126, 571–591 (1994). doi: 10.1111/j.1469-8137.1994.tb02952.x
[47] Choi, W. et al. Tomographic phase microscopy. Nat. Methods 4, 717–719 (2007). doi: 10.1038/nmeth1078
[48] Cruz, J. R. & de la Espina, S. M. D. Subnuclear compartmentalization and function of actin and nuclear Myosin I in plants. Chromosoma 118, 193–207 (2009). doi: 10.1007/s00412-008-0188-y
[49] Liu, D. H. & Kottke, I. Subcellular localization of Cd in the root cells of Allium sativum by electron energy loss spectroscopy. J. Biosci. 28, 471–478 (2003). doi: 10.1007/BF02705121
[50] Naidoo, G. & Naidoo, K. Uptake of polycyclic aromatic hydrocarbons and their cellular effects in the mangrove Bruguiera gymnorrhiza. Mar. Pollut. Bull. 113, 193–199 (2016). doi: 10.1016/j.marpolbul.2016.09.012
[51] Fragoso-Soriano, R. J., Jiménez-García, L. F. & Vázquez-López, C. AFM study of cellular structure organelles of Lacandonia schismatica and visualization of images using the error signal. J. Adv. Microsc. Res. 6, 40–45 (2011). doi: 10.1166/jamr.2011.1053
[52] Barer, R. Determination of dry mass, thickness, solid and water concentration in living cells. Nature 172, 1097–1098 (1953). doi: 10.1038/1721097a0
[53] Popescu, G. et al. Optical imaging of cell mass and growth dynamics. Am. J. Physiol. -Cell Physiol. 295, C538–C544 (2008). doi: 10.1152/ajpcell.00121.2008
[54] Phillips, K. G., Jacques, S. L. & McCarty, O. J. T. Measurement of single cell refractive index, dry mass, volume, and density using a transillumination microscope. Phys. Rev. Lett. 109, 118105 (2012). doi: 10.1103/PhysRevLett.109.118105
[55] Schürmann, M. et al. Cell nuclei have lower refractive index and mass density than cytoplasm. J. Biophotonics 9, 1068–1076 (2016). doi: 10.1002/jbio.201500273
[56] Tamada, Y. et al. Optical property analyses of plant cells for adaptive optics microscopy. Int. J. Optomechatronics 8, 89–99 (2014). doi: 10.1080/15599612.2014.901455
[57] Läubli, N. F. et al. 3D manipulation and imaging of plant cells using acoustically activated microbubbles. Small Methods 3, 1800527 (2019). doi: 10.1002/smtd.201800527
[58] Kim, K. et al. Optical diffraction tomography techniques for the study of cell pathophysiology. J. Biomed. Photonics Eng. 2, 020201 (2016). http://www.journals.ssau.ru/index.php/JBPE/article/download/2994/2991
[59] Balasubramani, V. et al. Holographic tomography: techniques and biomedical applications [Invited]. Appl. Opt. 60, B65–B80 (2021). doi: 10.1364/AO.416902
[60] Schnars, U. & Jüptner, W. P. O. Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol. 13, R85–R101 (2002). doi: 10.1088/0957-0233/13/9/201