[1] Priolo, F. et al. Silicon nanostructures for photonics and photovoltaics. Nature Nanotechnology 9, 19-32 (2014). doi: 10.1038/nnano.2013.271
[2] Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nonlinear silicon photonics. Nature Photonics 4, 535-544 (2010). doi: 10.1038/nphoton.2010.185
[3] Ducournau, G. Silicon photonics targets terahertz region. Nature Photonics 12, 574-575 (2018). doi: 10.1038/s41566-018-0242-0
[4] Pérez, D. et al. Multipurpose silicon photonics signal processor core. Nature Communications 8, 636 (2017). doi: 10.1038/s41467-017-00714-1
[5] Cazzanelli, M. et al. Second-harmonic generation in silicon waveguides strained by silicon nitride. Nature Materials 11, 148-154 (2012). doi: 10.1038/nmat3200
[6] Li, Y. Q., Zheng, W. & Huang, F. All-silicon photovoltaic detectors with deep ultraviolet selectivity. PhotoniX 1, 15 (2020). doi: 10.1186/s43074-020-00014-w
[7] Evlyukhin, A. B. et al. Optical response features of Si-nanoparticle arrays. Physical Review B 82, 045404 (2010). doi: 10.1103/PhysRevB.82.045404
[8] Evlyukhin, A. B. et al. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett. 12, 3749-3755 (2012). doi: 10.1021/nl301594s
[9] Kuznetsov, A. I. et al. Magnetic light. Scientific Reports 2, 492 (2012). doi: 10.1038/srep00492
[10] Terekhov, P. D. et al. Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges. Physical Review B 96, 035443 (2017). doi: 10.1103/PhysRevB.96.035443
[11] Duempelmann, L. et al. Color rendering plasmonic aluminum substrates with angular symmetry breaking. ACS Nano 9, 12383-12391 (2015). doi: 10.1021/acsnano.5b05710
[12] Kumar, K. et al. Printing colour at the optical diffraction limit. Nature Nanotechnology 7, 557-561 (2012). doi: 10.1038/nnano.2012.128
[13] Caldarola, M. et al. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nature Communications 6, 7915 (2015). doi: 10.1038/ncomms8915
[14] Shi, L. P. et al. Progressive self-boosting anapole-enhanced deep-ultraviolet third harmonic during few-cycle laser radiation. ACS Photonics 7, 1655-1661 (2020). doi: 10.1021/acsphotonics.0c00753
[15] Zywietz, U. et al. Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses. Nature Communications 5, 3402 (2014). doi: 10.1038/ncomms4402
[16] Lechago, S. et al. All-silicon on-chip optical nanoantennas as efficient interfaces for plasmonic devices. ACS Photonics 6, 1094-1099 (2019). doi: 10.1021/acsphotonics.8b01596
[17] Dostovalov, A. et al. Hierarchical anti-reflective laser-induced periodic surface structures (LIPSSs) on amorphous Si films for sensing applications. Nanoscale 12, 13431-13441 (2020). doi: 10.1039/D0NR02182B
[18] Vorobyev, A. Y. & Guo, C. L. Antireflection effect of femtosecond laser-induced periodic surface structures on silicon. Optics Express 19, A1031-A1036 (2011). doi: 10.1364/OE.19.0A1031
[19] Rebollar, E., Castillejo, M. & Ezquerra, T. A. Laser induced periodic surface structures on polymer films: from fundamentals to applications. European Polymer Journal 73, 162-174 (2015). doi: 10.1016/j.eurpolymj.2015.10.012
[20] Florian, C. et al. Surface functionalization by laser-induced periodic surface structures. Journal of Laser Applications 32, 022063 (2020). doi: 10.2351/7.0000103
[21] Müller, F. A., Kunz, C. & Gräf, S. Bio-inspired functional surfaces based on laser-induced periodic surface structures. Materials 9, 476 (2016). doi: 10.3390/ma9060476
[22] Liu, H. G., Lin, W. X. & Hong, M. H. Surface coloring by laser irradiation of solid substrates. APL Photonics 4, 051101 (2019). doi: 10.1063/1.5089778
[23] Vorobyev, A. Y. & Guo, C. L. Multifunctional surfaces produced by femtosecond laser pulses. Journal of Applied Physics 117, 033103 (2015). doi: 10.1063/1.4905616
[24] Birnbaum, M. Semiconductor surface damage produced by ruby lasers. Journal of Applied Physics 36, 3688-3689 (1965). doi: 10.1063/1.1703071
[25] He, S. T. et al. Surface structures induced by ultrashort laser pulses: formation mechanisms of ripples and grooves. Applied Surface Science 353, 1214-1222 (2015). doi: 10.1016/j.apsusc.2015.07.016
[26] Huang, M. et al. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser. ACS Nano 3, 4062-4070 (2009). doi: 10.1021/nn900654v
[27] Bonse, J., Rosenfeld, A. & Krüger, J. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses. Journal of Applied Physics 106, 104910 (2009). doi: 10.1063/1.3261734
[28] Bonse, J. & Gräf, S. Maxwell meets marangoni—a review of theories on laser-induced periodic surface structures. Laser & Photonics Reveviews 14, 2000215 (2020). doi: 10.1002/lpor.202000215
[29] Gnilitskyi, I. et al. Mechanisms of high-regularity periodic structuring of silicon surface by sub-MHz repetition rate ultrashort laser pulses. Applied Physics Letters 109, 143101 (2016). doi: 10.1063/1.4963784
[30] Dostovalov, A. V. et al. Influence of femtosecond laser pulse repetition rate on thermochemical laser-induced periodic surface structures formation by focused astigmatic Gaussian beam. Laser Physics Letters 16, 026003 (2019). doi: 10.1088/1612-202X/aaf78f
[31] Rudenko, A. et al. Self-organization of surfaces on the nanoscale by topography-mediated selection of quasi-cylindrical and plasmonic waves. Nanophotonics 8, 459-465 (2019). doi: 10.1515/nanoph-2018-0206
[32] Fuentes-Edfuf, Y. et al. Surface plasmon polaritons on rough metal surfaces: role in the formation of laser-induced periodic surface structures. ACS Omega 4, 6939-6946 (2019). doi: 10.1021/acsomega.9b00546
[33] Gnilitskyi, I. et al. High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity. Scientific Reports 7, 8485 (2017). doi: 10.1038/s41598-017-08788-z
[34] Reif, J. et al. On large area LIPSS coverage by multiple pulses. Applied Surface Science 336, 249-254 (2015). doi: 10.1016/j.apsusc.2014.11.153
[35] Öktem, B. et al. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nature Photonics 7, 897-901 (2013). doi: 10.1038/nphoton.2013.272
[36] Dostovalov, A. V. et al. Oxide composition and period variation of thermochemical LIPSS on chromium films with different thickness. Optics Express 26, 7712-7723 (2018). doi: 10.1364/OE.26.007712
[37] Dostovalov, A. V. et al. Lipss on thin metallic films: new insights from multiplicity of laser-excited electromagnetic modes and efficiency of metal oxidation. Applied Surface Science 491, 650-658 (2019). doi: 10.1016/j.apsusc.2019.05.171
[38] Skoulas, E. et al. Laser induced periodic surface structures as polarizing optical elements. Applied Surface Science 541, 148470 (2021). doi: 10.1016/j.apsusc.2020.148470
[39] Tsibidis, G. D. et al. Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions. Physical Review B 86, 115316 (2012). doi: 10.1103/PhysRevB.86.115316
[40] Stratakis, E. et al. Laser engineering of biomimetic surfaces. Materials Science and Engineering: R: Reports 141, 100562 (2020). doi: 10.1016/j.mser.2020.100562
[41] Jeschke, H. O. et al. Laser ablation thresholds of silicon for different pulse durations: theory and experiment. Applied Surface Science 197-198, 839-844 (2002). doi: 10.1016/S0169-4332(02)00458-0
[42] Bonse, J. et al. Femtosecond laser ablation of silicon–modification thresholds and morphology. Applied Physics A 74, 19-25 (2002). doi: 10.1007/s003390100893
[43] Zhang, Y. C. et al. Extremely regular periodic surface structures in a large area efficiently induced on silicon by temporally shaped femtosecond laser. Photonics Research 9, 839-847 (2021). doi: 10.1364/PRJ.418937
[44] Derrien, T. J. Y. et al. Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon. Journal of Applied Physics 114, 083104 (2013). doi: 10.1063/1.4818433
[45] Huang, J. et al. Fabrication of highly homogeneous and controllable nanogratings on silicon via chemical etching-assisted femtosecond laser modification. Nanophotonics 8, 869-878 (2019). doi: 10.1515/nanoph-2019-0056
[46] Nivas, J. J. J. et al. Surface structures with unconventional patterns and shapes generated by femtosecond structured light fields. Scientific Reports 8, 13613 (2018). doi: 10.1038/s41598-018-31768-w
[47] Horrer, A. et al. Local optical chirality induced by near-field mode interference in achiral plasmonic metamolecules. Nano Letters 20, 509-516 (2020). doi: 10.1021/acs.nanolett.9b04247
[48] Neufeld, O. & Cohen, O. Optical chirality in nonlinear optics: application to high harmonic generation. Physical Review Letters 120, 133206 (2018). doi: 10.1103/PhysRevLett.120.133206
[49] Zhao, R. Z., Huang, L. L. & Wang, Y. T. Recent advances in multi-dimensional metasurfaces holographic technologies. PhotoniX 1, 20 (2020). doi: 10.1186/s43074-020-00020-y