[1] |
Priolo, F. et al. Silicon nanostructures for photonics and photovoltaics. Nature Nanotechnology 9, 19-32 (2014). doi: 10.1038/nnano.2013.271 |
[2] |
Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nonlinear silicon photonics. Nature Photonics 4, 535-544 (2010). doi: 10.1038/nphoton.2010.185 |
[3] |
Ducournau, G. Silicon photonics targets terahertz region. Nature Photonics 12, 574-575 (2018). doi: 10.1038/s41566-018-0242-0 |
[4] |
Pérez, D. et al. Multipurpose silicon photonics signal processor core. Nature Communications 8, 636 (2017). doi: 10.1038/s41467-017-00714-1 |
[5] |
Cazzanelli, M. et al. Second-harmonic generation in silicon waveguides strained by silicon nitride. Nature Materials 11, 148-154 (2012). doi: 10.1038/nmat3200 |
[6] |
Li, Y. Q., Zheng, W. & Huang, F. All-silicon photovoltaic detectors with deep ultraviolet selectivity. PhotoniX 1, 15 (2020). doi: 10.1186/s43074-020-00014-w |
[7] |
Evlyukhin, A. B. et al. Optical response features of Si-nanoparticle arrays. Physical Review B 82, 045404 (2010). doi: 10.1103/PhysRevB.82.045404 |
[8] |
Evlyukhin, A. B. et al. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett. 12, 3749-3755 (2012). doi: 10.1021/nl301594s |
[9] |
Kuznetsov, A. I. et al. Magnetic light. Scientific Reports 2, 492 (2012). doi: 10.1038/srep00492 |
[10] |
Terekhov, P. D. et al. Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges. Physical Review B 96, 035443 (2017). doi: 10.1103/PhysRevB.96.035443 |
[11] |
Duempelmann, L. et al. Color rendering plasmonic aluminum substrates with angular symmetry breaking. ACS Nano 9, 12383-12391 (2015). doi: 10.1021/acsnano.5b05710 |
[12] |
Kumar, K. et al. Printing colour at the optical diffraction limit. Nature Nanotechnology 7, 557-561 (2012). doi: 10.1038/nnano.2012.128 |
[13] |
Caldarola, M. et al. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nature Communications 6, 7915 (2015). doi: 10.1038/ncomms8915 |
[14] |
Shi, L. P. et al. Progressive self-boosting anapole-enhanced deep-ultraviolet third harmonic during few-cycle laser radiation. ACS Photonics 7, 1655-1661 (2020). doi: 10.1021/acsphotonics.0c00753 |
[15] |
Zywietz, U. et al. Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses. Nature Communications 5, 3402 (2014). doi: 10.1038/ncomms4402 |
[16] |
Lechago, S. et al. All-silicon on-chip optical nanoantennas as efficient interfaces for plasmonic devices. ACS Photonics 6, 1094-1099 (2019). doi: 10.1021/acsphotonics.8b01596 |
[17] |
Dostovalov, A. et al. Hierarchical anti-reflective laser-induced periodic surface structures (LIPSSs) on amorphous Si films for sensing applications. Nanoscale 12, 13431-13441 (2020). doi: 10.1039/D0NR02182B |
[18] |
Vorobyev, A. Y. & Guo, C. L. Antireflection effect of femtosecond laser-induced periodic surface structures on silicon. Optics Express 19, A1031-A1036 (2011). doi: 10.1364/OE.19.0A1031 |
[19] |
Rebollar, E., Castillejo, M. & Ezquerra, T. A. Laser induced periodic surface structures on polymer films: from fundamentals to applications. European Polymer Journal 73, 162-174 (2015). doi: 10.1016/j.eurpolymj.2015.10.012 |
[20] |
Florian, C. et al. Surface functionalization by laser-induced periodic surface structures. Journal of Laser Applications 32, 022063 (2020). doi: 10.2351/7.0000103 |
[21] |
Müller, F. A., Kunz, C. & Gräf, S. Bio-inspired functional surfaces based on laser-induced periodic surface structures. Materials 9, 476 (2016). doi: 10.3390/ma9060476 |
[22] |
Liu, H. G., Lin, W. X. & Hong, M. H. Surface coloring by laser irradiation of solid substrates. APL Photonics 4, 051101 (2019). doi: 10.1063/1.5089778 |
[23] |
Vorobyev, A. Y. & Guo, C. L. Multifunctional surfaces produced by femtosecond laser pulses. Journal of Applied Physics 117, 033103 (2015). doi: 10.1063/1.4905616 |
[24] |
Birnbaum, M. Semiconductor surface damage produced by ruby lasers. Journal of Applied Physics 36, 3688-3689 (1965). doi: 10.1063/1.1703071 |
[25] |
He, S. T. et al. Surface structures induced by ultrashort laser pulses: formation mechanisms of ripples and grooves. Applied Surface Science 353, 1214-1222 (2015). doi: 10.1016/j.apsusc.2015.07.016 |
[26] |
Huang, M. et al. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser. ACS Nano 3, 4062-4070 (2009). doi: 10.1021/nn900654v |
[27] |
Bonse, J., Rosenfeld, A. & Krüger, J. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses. Journal of Applied Physics 106, 104910 (2009). doi: 10.1063/1.3261734 |
[28] |
Bonse, J. & Gräf, S. Maxwell meets marangoni—a review of theories on laser-induced periodic surface structures. Laser & Photonics Reveviews 14, 2000215 (2020). doi: 10.1002/lpor.202000215 |
[29] |
Gnilitskyi, I. et al. Mechanisms of high-regularity periodic structuring of silicon surface by sub-MHz repetition rate ultrashort laser pulses. Applied Physics Letters 109, 143101 (2016). doi: 10.1063/1.4963784 |
[30] |
Dostovalov, A. V. et al. Influence of femtosecond laser pulse repetition rate on thermochemical laser-induced periodic surface structures formation by focused astigmatic Gaussian beam. Laser Physics Letters 16, 026003 (2019). doi: 10.1088/1612-202X/aaf78f |
[31] |
Rudenko, A. et al. Self-organization of surfaces on the nanoscale by topography-mediated selection of quasi-cylindrical and plasmonic waves. Nanophotonics 8, 459-465 (2019). doi: 10.1515/nanoph-2018-0206 |
[32] |
Fuentes-Edfuf, Y. et al. Surface plasmon polaritons on rough metal surfaces: role in the formation of laser-induced periodic surface structures. ACS Omega 4, 6939-6946 (2019). doi: 10.1021/acsomega.9b00546 |
[33] |
Gnilitskyi, I. et al. High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity. Scientific Reports 7, 8485 (2017). doi: 10.1038/s41598-017-08788-z |
[34] |
Reif, J. et al. On large area LIPSS coverage by multiple pulses. Applied Surface Science 336, 249-254 (2015). doi: 10.1016/j.apsusc.2014.11.153 |
[35] |
Öktem, B. et al. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nature Photonics 7, 897-901 (2013). doi: 10.1038/nphoton.2013.272 |
[36] |
Dostovalov, A. V. et al. Oxide composition and period variation of thermochemical LIPSS on chromium films with different thickness. Optics Express 26, 7712-7723 (2018). doi: 10.1364/OE.26.007712 |
[37] |
Dostovalov, A. V. et al. Lipss on thin metallic films: new insights from multiplicity of laser-excited electromagnetic modes and efficiency of metal oxidation. Applied Surface Science 491, 650-658 (2019). doi: 10.1016/j.apsusc.2019.05.171 |
[38] |
Skoulas, E. et al. Laser induced periodic surface structures as polarizing optical elements. Applied Surface Science 541, 148470 (2021). doi: 10.1016/j.apsusc.2020.148470 |
[39] |
Tsibidis, G. D. et al. Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions. Physical Review B 86, 115316 (2012). doi: 10.1103/PhysRevB.86.115316 |
[40] |
Stratakis, E. et al. Laser engineering of biomimetic surfaces. Materials Science and Engineering: R: Reports 141, 100562 (2020). doi: 10.1016/j.mser.2020.100562 |
[41] |
Jeschke, H. O. et al. Laser ablation thresholds of silicon for different pulse durations: theory and experiment. Applied Surface Science 197-198, 839-844 (2002). doi: 10.1016/S0169-4332(02)00458-0 |
[42] |
Bonse, J. et al. Femtosecond laser ablation of silicon–modification thresholds and morphology. Applied Physics A 74, 19-25 (2002). doi: 10.1007/s003390100893 |
[43] |
Zhang, Y. C. et al. Extremely regular periodic surface structures in a large area efficiently induced on silicon by temporally shaped femtosecond laser. Photonics Research 9, 839-847 (2021). doi: 10.1364/PRJ.418937 |
[44] |
Derrien, T. J. Y. et al. Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon. Journal of Applied Physics 114, 083104 (2013). doi: 10.1063/1.4818433 |
[45] |
Huang, J. et al. Fabrication of highly homogeneous and controllable nanogratings on silicon via chemical etching-assisted femtosecond laser modification. Nanophotonics 8, 869-878 (2019). doi: 10.1515/nanoph-2019-0056 |
[46] |
Nivas, J. J. J. et al. Surface structures with unconventional patterns and shapes generated by femtosecond structured light fields. Scientific Reports 8, 13613 (2018). doi: 10.1038/s41598-018-31768-w |
[47] |
Horrer, A. et al. Local optical chirality induced by near-field mode interference in achiral plasmonic metamolecules. Nano Letters 20, 509-516 (2020). doi: 10.1021/acs.nanolett.9b04247 |
[48] |
Neufeld, O. & Cohen, O. Optical chirality in nonlinear optics: application to high harmonic generation. Physical Review Letters 120, 133206 (2018). doi: 10.1103/PhysRevLett.120.133206 |
[49] |
Zhao, R. Z., Huang, L. L. & Wang, Y. T. Recent advances in multi-dimensional metasurfaces holographic technologies. PhotoniX 1, 20 (2020). doi: 10.1186/s43074-020-00020-y |