[1] Wang, C. H., Mahmood, H. & Khalid, S. Examining the impact of globalization and natural resources on environmental sustainability in G20 countries. Scientific Reports 14, 30921 (2024). doi: 10.1038/s41598-024-81613-6
[2] Zhang, W. et al. Arylcarboxylation of unactivated alkenes with CO2 via visible-light photoredox catalysis. Nature Communications 14, 3529 (2023). doi: 10.1038/s41467-023-39240-8
[3] Dong, J. J. et al. Visible-light deposition of CrOx cocatalyst on TiO2: Cr valence regulation for superior photocatalytic CO2 reduction to CH4. Journal of Energy Chemistry 64, 103-112 (2022). doi: 10.1016/j.jechem.2021.04.028
[4] Wang, L. et al. Hollow multi-shelled structures of Co3O4 dodecahedron with unique crystal orientation for enhanced photocatalytic CO2 reduction. Journal of the American Chemical Society 141, 2238-2241 (2019). doi: 10.1021/jacs.8b13528
[5] Lu, X. X. et al. Cu2O photocatalyst: activity enhancement driven by concave surface. Materials Today Energy 16, 100422 (2020). doi: 10.1016/j.mtener.2020.100422
[6] Tahir, M. et al. Recent advances in titanium carbide MXene-based nanotextures with influential effect of synthesis parameters for solar CO2 reduction and H2 production: a critical review. Journal of Energy Chemistry 76, 295-331 (2023). doi: 10.1016/j.jechem.2022.09.046
[7] Chen, Z. W. et al. Steric hindrance in sulfur vacancy of monolayer MoS2 boosts electrochemical reduction of carbon monoxide to methane. ChemSusChem 11, 1455-1459 (2018). doi: 10.1002/cssc.201702262
[8] Xu, Y. F. et al. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. Journal of the American Chemical Society 139, 5660-5663 (2017). doi: 10.1021/jacs.7b00489
[9] Yuan, X. Z. et al. Polypyrrole reinforced ZIF-67 with modulated facet exposure and billion-fold electrical conductivity enhancement towards robust photocatalytic CO2 reduction. Journal of Energy Chemistry 60, 202-208 (2021). doi: 10.1016/j.jechem.2020.12.025
[10] White, J. L. et al. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chemical Reviews 115, 12888-12935 (2015). doi: 10.1021/acs.chemrev.5b00370
[11] Gong, Y. N. et al. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angewandte Chemie 132, 2727-2731 (2020). doi: 10.1002/ange.201914977
[12] Weiss, R., Sullivan, C. M. & Nienhaus, L. Sizing up metal halide perovskite photocatalysts: from nano to bulk. Advanced Optical Materials 12, 2300626 (2024). doi: 10.1002/adom.202300626
[13] Singh, S. et al. Perovskite photocatalysis: realizing long-lived charge-separated states at the interface of CsPbBr3 nanocrystals and functionalized ferrocene molecules. Journal of Materials Chemistry A 10, 21112-21123 (2022). doi: 10.1039/D2TA05692E
[14] Hou, J. G. et al. Perovskite-based nanocubes with simultaneously improved visible-light absorption and charge separation enabling efficient photocatalytic CO2 reduction. Nano Energy 30, 59-68 (2016). doi: 10.1016/j.nanoen.2016.09.033
[15] Zhu, X. L. et al. Lead halide perovskites for photocatalytic organic synthesis. Nature Communications 10, 2843 (2019). doi: 10.1038/s41467-019-10634-x
[16] Cheng, P. F., Han, K. L. & Chen, J. S. Recent advances in lead-free halide perovskites for photocatalysis. ACS Materials Letters 5, 60-78 (2023). doi: 10.1021/acsmaterialslett.2c00829
[17] Fu, X. W. et al. Development strategies and improved photocatalytic CO2 reduction performance of metal halide perovskite nanocrystals. Journal of Energy Chemistry 83, 397-422 (2023). doi: 10.1016/j.jechem.2023.04.028
[18] Xu, F. Y. et al. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nature Communications 11, 4613 (2020). doi: 10.1038/s41467-020-18350-7
[19] Song, W. T. et al. Unraveling the transformation from type-II to Z-scheme in perovskite-based heterostructures for enhanced photocatalytic CO2 reduction. Journal of the American Chemical Society 146, 3303-3314 (2024). doi: 10.1021/jacs.3c12073
[20] Wan, X. D. et al. Ultralong lifetime of plasmon-excited electrons realized in nonepitaxial/epitaxial Au@CdS/CsPbBr3 triple-heteronanocrystals. Advanced Materials 35, 2207555 (2023). doi: 10.1002/adma.202207555
[21] He, Y. J. et al. Dual-protected metal halide perovskite nanosheets with an enhanced set of stabilities. Angewandte Chemie International Edition 60, 7259-7266 (2021). doi: 10.1002/anie.202014983
[22] Talianov, P. M. et al. Halide perovskite nanocrystals with enhanced water stability for upconversion imaging in a living cell. The Journal of Physical Chemistry Letters 12, 8991-8998 (2021). doi: 10.1021/acs.jpclett.1c01968
[23] He, Y. J. et al. Unconventional route to dual-shelled organolead halide perovskite nanocrystals with controlled dimensions, surface chemistry, and stabilities. Science Advances 5, eaax4424 (2019). doi: 10.1126/sciadv.aax4424
[24] Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters 15, 3692-3696 (2015). doi: 10.1021/nl5048779
[25] Naumkin, A. V. et al. NIST X-ray photoelectron spectroscopy database. (2023).
[26] Lv, X. Y. et al. In-situ producing CsPbBr3 nanocrystals on (001)-faceted TiO2 nanosheets as S-scheme heterostructure for bifunctional photocatalysis. Journal of Colloid and Interface Science 652, 673-679 (2023). doi: 10.1016/j.jcis.2023.07.174
[27] Huang, X. et al. Readily available stable nonquantum dot CsPbBr3/TiO2 heterostructure crystals for efficient photocatalyst. Solar RRL 8, 2400013 (2024). doi: 10.1002/solr.202400013
[28] Ginzburg, P. Cavity quantum electrodynamics in application to plasmonics and metamaterials. Reviews in Physics 1, 120-139 (2016). doi: 10.1016/j.revip.2016.07.001
[29] Yang, X. et al. LSPR-enhanced photocatalytic N2 fixation over Z-scheme POMOF-derived Cu/WO2 modified C-BiOBr with multiple active sites. Inorganic Chemistry Frontiers 11, 8246-8257 (2024). doi: 10.1039/D4QI02128B
[30] Anderson, S. R. et al. LSPR-induced catalytic enhancement using bimetallic copper fabrics prepared by galvanic replacement reactions. Advanced Materials Interfaces 6, 1900516 (2019). doi: 10.1002/admi.201900516
[31] Lv, S. J. et al. Review on LSPR assisted photocatalysis: effects of physical fields and opportunities in multifield decoupling. Nanoscale Advances 4, 2608-2631 (2022). doi: 10.1039/D2NA00140C
[32] Gilad, H. et al. Gilded vaterite optothermal transport in a bubble. Scientific Reports 13, 12158 (2023). doi: 10.1038/s41598-023-39068-8
[33] Kiligaridis, A. et al. Are Shockley-read-hall and ABC models valid for lead halide perovskites? Nature Communications 12, 3329 (2021).
[34] Richter, J. M. et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nature Communications 7, 13941 (2016). doi: 10.1038/ncomms13941
[35] He, J. Z. et al. Well-dispersed CsPbBr3@TiO2 heterostructure nanocrystals from asymmetric to symmetric. Small 20, 2406783 (2024). doi: 10.1002/smll.202406783
[36] Wang, Z. et al. Nanoscale halide perovskites for photocatalytic CO2 reduction: product selectivity, strategies implemented, and charge-carrier separation. Journal of Materials Chemistry A 12, 20542-20577 (2024). doi: 10.1039/D4TA02446J
[37] Watkins, N. B. et al. Hydrodynamics determine tafel slopes in electrochemical CO2 reduction on copper. ACS Energy Letters 8, 2185-2192 (2023). doi: 10.1021/acsenergylett.3c00442
[38] Fourmond, V. et al. Correcting for electrocatalyst desorption and inactivation in chronoamperometry experiments. Analytical Chemistry 81, 2962-2968 (2009). doi: 10.1021/ac8025702
[39] Yan, T. J. et al. Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO2 photocatalytic hydrogenation. Nature Communications 11, 6095 (2020). doi: 10.1038/s41467-020-19997-y
[40] Jiang, X. Y. et al. Plasmonic active "hot spots"-confined photocatalytic CO2 reduction with high selectivity for CH4 production. Advanced Materials 34, 2109330 (2022). doi: 10.1002/adma.202109330
[41] Hezam, A. et al. CeO2 nanostructures enriched with oxygen vacancies for photocatalytic CO2 reduction. ACS Applied Nano Materials 3, 138-148 (2020). doi: 10.1021/acsanm.9b01833
[42] Gao, J. et al. Electrochemical synthesis of propylene from carbon dioxide on copper nanocrystals. Nature Chemistry 15, 705-713 (2023). doi: 10.1038/s41557-023-01163-8
[43] Morales-Guio, C. G. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nature Catalysis 1, 764-771 (2018). doi: 10.1038/s41929-018-0139-9
[44] Ip, C. M. & Troisi, A. A computational study of the competing reaction mechanisms of the photo-catalytic reduction of CO2 on anatase(101). Physical Chemistry Chemical Physics 18, 25010-25021 (2016). doi: 10.1039/C6CP02642G
[45] Habisreutinger, S. N., Schmidt-Mende, L. & Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition 52, 7372-7408 (2013). doi: 10.1002/anie.201207199
[46] Ji, Y. F. & Luo, Y. New mechanism for photocatalytic reduction of CO2 on the anatase TiO2 (101) surface: the essential role of oxygen vacancy. Journal of the American Chemical Society 138, 15896-15902 (2016). doi: 10.1021/jacs.6b05695
[47] Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nature Energy 4, 732-745 (2019). doi: 10.1038/s41560-019-0450-y
[48] Kortlever, R. et al. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. The Journal of Physical Chemistry Letters 6, 4073-4082 (2015). doi: 10.1021/acs.jpclett.5b01559
[49] Ji, Y. F. & Luo, Y. Theoretical study on the mechanism of photoreduction of CO2 to CH4 on the anatase TiO2 (101) surface. ACS Catalysis 6, 2018-2025 (2016). doi: 10.1021/acscatal.5b02694
[50] Xia, Y. et al. Improving artificial photosynthesis over carbon nitride by gas–liquid–solid interface management for full light-induced CO2 reduction to C1 and C2 fuels and O2. ChemSusChem 13, 1730-1734 (2020). doi: 10.1002/cssc.201903515
[51] Chen, Q. et al. Photo-induced Au–Pd alloying at TiO2 {101} facets enables robust CO2 photocatalytic reduction into hydrocarbon fuels. Journal of Materials Chemistry A 7, 1334-1340 (2019). doi: 10.1039/C8TA09412H
[52] Yu, F. Y. et al. Hierarchically porous metal–organic framework/MoS2 interface for selective photocatalytic conversion of CO2 with H2O into CH3COOH. Angewandte Chemie International Edition 60, 24849-24853 (2021). doi: 10.1002/anie.202108892
[53] Zhu, S. et al. Selective CO2 photoreduction into C2 product enabled by charge-polarized metal pair sites. Nano Letters 21, 2324-2331 (2021). doi: 10.1021/acs.nanolett.1c00383
[54] Ji, J. X. et al. Highly selective photocatalytic reduction of CO2 to ethane over Au-O-Ce sites at micro-interface. Applied Catalysis B: Environmental 321, 122020 (2023). doi: 10.1016/j.apcatb.2022.122020
[55] Al-Madanat, O. et al. Application of EPR spectroscopy in TiO2 and Nb2O5 photocatalysis. Catalysts 11, 1514 (2021). doi: 10.3390/catal11121514