[1] Krüger, J. & Kautek, W. Femtosecond pulse visible laser processing of fibre composite materials. Appl. Surf. Sci. 106, 383-389 (1996). doi: 10.1016/S0169-4332(96)00442-4
[2] Wise, F. W., Chong, A. & Renninger, W. H. High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion. Laser Photonics Rev. 2, 58-73 (2008). doi: 10.1002/lpor.200710041
[3] Jauregui, C., Limpert, J. & Tünnermann, A. High-power fibre lasers. Nat. Photonics 7, 861-867 (2013). doi: 10.1038/nphoton.2013.273
[4] Oubei, H. M. et al. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication. Opt. Express 23, 23302-23309 (2015). doi: 10.1364/OE.23.023302
[5] Fermann, M. E. & Hartl, I. Ultrafast fibre lasers. Nat. Photonics 7, 868-874 (2013). doi: 10.1038/nphoton.2013.280
[6] Li, R. H. et al. Ultrawide-space and controllable soliton molecules in a narrow-linewidth mode-locked fiber laser. IEEE Photonics Technol. Lett. 30, 1423-1426 (2018). doi: 10.1109/LPT.2018.2846558
[7] Gomes, L. A. et al. Picosecond SESAM-based ytterbium mode-locked fiber lasers. IEEE J. Sel. Top. Quantum Electron. 10, 129-136 (2004). doi: 10.1109/JSTQE.2003.822918
[8] Sun, Z. P. et al. Graphene mode-locked ultrafast laser. ACS Nano 4, 803-810 (2010). doi: 10.1021/nn901703e
[9] Wang, T. S. et al. Passively mode-locked fiber lasers based on nonlinearity at 2-μm band. IEEE J. Sel. Top. Quantum Electron. 24, 1102011 (2018).
[10] Krzempek, K., Tomaszewska, D. & Abramski, K. M. Dissipative soliton resonance mode-locked all-polarization-maintaining double clad Er:Yb fiber laser. Opt. Express 25, 24853-24860 (2017). doi: 10.1364/OE.25.024853
[11] Song, Y. F. et al. Recent progress of study on optical solitons in fiber lasers. Appl. Phys. Rev. 6, 021313 (2019). doi: 10.1063/1.5091811
[12] Ma, Z. J. et al. Composite film with anisotropically enhanced optical nonlinearity for a pulse-width tunable fiber laser. J. Mater. Chem. C 6, 1126-1135 (2018). doi: 10.1039/C7TC03711B
[13] Song, Y. F. et al. Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber. Opt. Express 24, 25933-25942 (2016). doi: 10.1364/OE.24.025933
[14] Guo, B. et al. Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Opt. Express 26, 22750-22760 (2018). doi: 10.1364/OE.26.022750
[15] French, S., Ebrahimzadeh, M. & Miller, A. High-power, high-repetition-rate picosecond optical parametric oscillator tunable in the visible. Opt. Lett. 21, 976-978 (1996). doi: 10.1364/OL.21.000976
[16] Taylor, L. R., Feng, Y. & Calia, D. B. 50W CW visible laser source at 589nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers. Opt. Express 18, 8540-8555 (2010). doi: 10.1364/OE.18.008540
[17] Parker, J. M. Fluoride glasses. Annu. Rev. Mater. Sci. 19, 21-41 (1989).
[18] Zou, J. H. et al. Green/red pulsed vortex-beam oscillations in all-fiber lasers with visible-resonance gold nanorods. Nanoscale 11, 15991-16000 (2019). doi: 10.1039/C9NR05096E
[19] Kowalska, M. et al. Ultra-violet emission in Ho:ZBLAN fiber. J. Alloy. Compd. 380, 156-158 (2004). doi: 10.1016/j.jallcom.2004.03.019
[20] Wang, H. J. et al. High-efficiency, yellow-light Dy3+-doped fiber laser with wavelength tuning from 568.7 to 581.9 nm. Opt. Lett. 44, 4423-4426 (2019).
[21] Li, N. et al. Direct generation of an ultrafast vortex beam in a CVD-graphene-based passively mode-locked Pr: LiYF4 visible laser. Photonics. Research 7, 1209-1213 (2019).
[22] Zhang, Y. X. et al. Low-dimensional saturable absorbers in the visible spectral region. Adv. Optical Mater. 7, 1800886 (2019). doi: 10.1002/adom.201800886
[23] Luo, Z. Q. et al. Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers. Nanoscale 8, 1066-1072 (2016). doi: 10.1039/C5NR06981E
[24] Zhang, Y. X. et al. Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range. Opt. Lett. 42, 547-550 (2017). doi: 10.1364/OL.42.000547
[25] Xu, S. et al. Ultrafast nonlinear photoresponse of single-wall carbon nanotubes: a broadband degenerate investigation. Nanoscale 8, 9304-9309 (2016). doi: 10.1039/C6NR00652C
[26] Chang, W. et al. Dissipative soliton resonances. Phys. Rev. A 78, 023830 (2008). doi: 10.1103/PhysRevA.78.023830
[27] Wu, X. et al. Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser. Opt. Express 17, 5580-5584 (2009). doi: 10.1364/OE.17.005580
[28] Ahmad, H., Aidit, S. N. & Tiu, Z. C. Dissipative soliton resonance in a passively mode-locked praseodymium fiber laser. Opt. Laser Technol. 112, 20-25 (2019). doi: 10.1016/j.optlastec.2018.10.056
[29] Semaan, G. et al. 10 μJ dissipative soliton resonance square pulse in a dual amplifier figure-of-eight double-clad Er:Yb mode-locked fiber laser. Opt. Lett. 41, 4767-4770 (2016). doi: 10.1364/OL.41.004767
[30] Becheker, R. et al. Dissipative soliton resonance in a mode-locked Nd-fiber laser operating at 927 nm. Opt. Lett. 44, 5497-5500 (2019). doi: 10.1364/OL.44.005497
[31] Li, D. J. et al. Characterization and compression of dissipative-soliton-resonance pulses in fiber lasers. Sci. Rep. 6, 23631 (2016). doi: 10.1038/srep23631
[32] Zhao, L. M. et al. Route to larger pulse energy in ultrafast fiber lasers. IEEE J. Sel. Top. Quantum Electron. 24, 8800409 (2018).
[33] Li, D. J. et al. Mechanism of dissipative-soliton-resonance generation in passively mode-locked all-normal-dispersion fiber lasers. J. Lightwave Technol. 33, 3781-3787 (2015). doi: 10.1109/JLT.2015.2449874
[34] Du, T. J. et al. 2 μm high-power dissipative soliton resonance in a compact σ-shaped Tm-doped double-clad fiber laser. Appl. Phys. Express 11, 052701 (2018). doi: 10.7567/APEX.11.052701
[35] Du, T. J. et al. 1.2-W average-power, 700-W peak-power, 100-ps dissipative soliton resonance in a compact Er:Yb co-doped double-clad fiber laser. Opt. Lett. 42, 462-465 (2017). doi: 10.1364/OL.42.000462
[36] Smart, R. G. et al. CW room temperature operation of praseodymium-doped fluorozirconate glass fibre lasers in the blue-green, green and red spectral regions. Opt. Commun. 86, 333-340 (1991). doi: 10.1016/0030-4018(91)90014-5
[37] Grelu, P. et al. Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators. J. Optical Soc. Am. B 27, 2336-2341 (2010). doi: 10.1364/JOSAB.27.002336
[38] Deng, Z. S. et al. Switchable generation of rectangular noise-like pulse and dissipative soliton resonance in a fiber laser. Opt. Lett. 42, 4517-4520 (2017). doi: 10.1364/OL.42.004517
[39] Zhao, L. M. et al. Noise-like pulse in a gain-guided soliton fiber laser. Opt. Express 15, 2145-2150 (2007). doi: 10.1364/OE.15.002145
[40] Stolen, R. H. & Lin, C. Self-phase-modulation in silica optical fibers. Phys. Rev. A 17, 1448-1453 (1978). doi: 10.1103/PhysRevA.17.1448
[41] Xu, H. Y. et al. Effects of nanomaterial saturable absorption on passively mode-locked fiber lasers in an anomalous dispersion regime: simulations and experiments. IEEE J. Sel. Top. Quantum Electron. 24, 1100209 (2018).
[42] Lyu, Y. J. et al. Multipulse dynamics under dissipative soliton resonance conditions. Opt. Express 25, 13286-13295 (2017). doi: 10.1364/OE.25.013286