[1] |
Yoneda, H. et al. Atomic inner-shell laser at 1.5-ångström wavelength pumped by an X-ray free-electron laser. Nature 524, 446-449 (2015). doi: 10.1038/nature14894 |
[2] |
Pfeiffer, F. X-ray ptychography. Nature Photonics 12, 9-17 (2018). doi: 10.1038/s41566-017-0072-5 |
[3] |
Chapman, H. N. Fourth-generation light sources. IUCrJ 10, 246-247 (2023). doi: 10.1107/S2052252523003585 |
[4] |
Zeng, Y. et al. Multidisciplinary and multiscale nanoscience research roadmap based on large scientific facilities. Science China Chemistry 67, 2497-2523 (2024). doi: 10.1007/s11426-024-2028-7 |
[5] |
Cocco, D. et al. Wavefront preserving X-ray optics for Synchrotron and Free Electron Laser photon beam transport systems. Physics Reports 974, 1-40 (2022). doi: 10.1016/j.physrep.2022.05.001 |
[6] |
Koehlenbeck, S. M. et al. Dynamic motion trajectory control with nanoradian accuracy for multi-element X-ray optical systems via laser interferometry. Light: Science & Applications 14, 129 (2025). |
[7] |
Yamada, J. et al. Extreme focusing of hard X-ray free-electron laser pulses enables 7 nm focus width and 1022 W cm−2 intensity. Nature Photonics 18, 685-690 (2024). doi: 10.1038/s41566-024-01411-4 |
[8] |
Qi, P. & Shvyd’ko, Y. Signatures of misalignment in x-ray cavities of cavity-based x-ray free-electron lasers. Physical Review Accelerators and Beams 25, 050701 (2022). doi: 10.1103/PhysRevAccelBeams.25.050701 |
[9] |
Koehlenbeck, S. M. et al. A study on motion reduction for suspended platforms used in gravitational wave detectors. Scientific Reports 13, 2388 (2023). doi: 10.1038/s41598-023-29418-x |
[10] |
Armano, M. et al. Sensor noise in LISA pathfinder: in-flight performance of the optical test mass readout. Physical Review Letters 126, 131103 (2021). doi: 10.1103/PhysRevLett.126.131103 |
[11] |
Margraf, R. et al. Low-loss stable storage of 1.2 Å X-ray pulses in a 14 m Bragg cavity. Nature Photonics 17, 878-882 (2023). |
[12] |
Mills, D. , Padmore, H. & Lessner, E. X-ray Optics for BES Light Source Facilities. (Brookhaven National Lab, 2013). |
[13] |
Gunjala, G. et al. Data-driven modeling and control of an X-ray bimorph adaptive mirror. Journal of Synchrotron Radiation 30, 57-64 (2023). doi: 10.1107/S1600577522011080 |
[14] |
Kandel, S. et al. Bayesian optimization for autoalignment of an x-ray focusing system. Optica Imaging Congress (3D, COSI, DH, FLatOptics, IS, pcAOP). Boston, Massachusetts, USA: Optica Publishing Group, 2023. |
[15] |
Rebuffi, L. et al. AutoFocus: AI-driven alignment of nanofocusing X-ray mirror systems. Optics Express 31, 39514-39527 (2023). doi: 10.1364/OE.505289 |
[16] |
Zhang, R. Y. et al. A tandem neural network-based controller for X-ray bimorph mirrors. Optics Letters (in the press). |