[1] Oto, T. et al. 100 mW deep-ultraviolet emission from aluminium-nitride-based quantum wells pumped by an electron beam. Nat. Photonics 4, 767–770 (2010). doi: 10.1038/nphoton.2010.220
[2] Kneissl, M. et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photonics 13, 233–244 (2019). doi: 10.1038/s41566-019-0359-9
[3] Lim, S. H. et al. Electrically driven, phosphor-free, white light-emitting diodes using gallium nitride-based double concentric truncated pyramid structures. Light. : Sci. Appl. 5, e16030 (2016). doi: 10.1038/lsa.2016.30
[4] Yan, R. S. et al. GaN/NbN epitaxial semiconductor/superconductor heterostructures. Nature 555, 183–189 (2018). doi: 10.1038/nature25768
[5] Wang, Y. J. et al. Full-duplex light communication with a monolithic multicomponent system. Light. : Sci. Appl. 7, 83 (2018). doi: 10.1038/s41377-018-0083-0
[6] Li, D. B. et al. AlGaN photonics: recent advances in materials and ultraviolet devices. Adv. Opt. Photonics 10, 43–110 (2018). doi: 10.1364/AOP.10.000043
[7] Pampili, P. & Parbrook, P. J. Doping of III-nitride materials. Mater. Sci. Semiconductor Process. 62, 180–191 (2017). doi: 10.1016/j.mssp.2016.11.006
[8] Yan, Q. M. et al. Origins of optical absorption and emission lines in AlN. Appl. Phys. Lett. 105, 111104 (2014). doi: 10.1063/1.4895786
[9] Kinoshita, T. et al. High p-type conduction in high-Al content Mg-doped AlGaN. Appl. Phys. Lett. 102, 012105 (2013). doi: 10.1063/1.4773594
[10] Gunning, B. P. et al. Comprehensive study of the electronic and optical behavior of highly degenerate p-type Mg-doped GaN and AlGaN. J. Appl. Phys. 117, 045710 (2015). doi: 10.1063/1.4906464
[11] Zhang, S. B., Wei, S. H. & Zunger, A. Overcoming doping bottlenecks in semiconductors and wide-gap materials. Phys. B: Condens. Matter 273-274, 976–980 (1999).
[12] Wei, S. H. Overcoming the doping bottleneck in semiconductors. Computational Mater. Sci. 30, 337–348 (2004). doi: 10.1016/j.commatsci.2004.02.024
[13] Lyons, J. L., Janotti, A. & Van de Walle, C. G. Shallow versus deep nature of Mg acceptors in nitride semiconductors. Phys. Rev. Lett. 108, 156403 (2012). doi: 10.1103/PhysRevLett.108.156403
[14] Liu, Z. Q. et al. Impurity resonant states p-type doping in wide-band-gap nitrides. Sci. Rep. 6, 19537 (2016). doi: 10.1038/srep19537
[15] Lyons, J. L., Janotti, A. & Van de Walle, C. G. Effects of hole localization on limiting p-type conductivity in oxide and nitride semiconductors. J. Appl. Phys. 115, 012014 (2014). doi: 10.1063/1.4838075
[16] Taniyasu, Y., Kasu, M. & Makimoto, T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 441, 325–328 (2006). doi: 10.1038/nature04760
[17] Simon, J. et al. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science 327, 60–64 (2010). doi: 10.1126/science.1183226
[18] Bayram, C. et al. Delta-doping optimization for high quality p-type GaN. J. Appl. Phys. 104, 083512 (2008). doi: 10.1063/1.3000564
[19] Liang, Y. H. & Towe, E. Progress in efficient doping of high aluminum-containing group III-nitrides. Appl. Phys. Rev. 5, 011107 (2018). doi: 10.1063/1.5009349
[20] Bayram, C. et al. Performance enhancement of GaN ultraviolet avalanche photodiodes with p-type δ-doping. Appl. Phys. Lett. 92, 241103 (2008). doi: 10.1063/1.2948857
[21] Melnikov, D. V. & Chelikowsky, J. R. Quantum confinement in phosphorus-doped silicon nanocrystals. Phys. Rev. Lett. 92, 046802 (2004). doi: 10.1103/PhysRevLett.92.046802
[22] Shu, H. B. et al. First-principles study of the doping of InAs nanowires: role of surface dangling bonds. J. Phys. Chem. C. 115, 14449–14454 (2011). doi: 10.1021/jp112002n
[23] Persson, C. et al. Strong valence-band offset bowing of ZnO1-xSx Enhances p-type nitrogen doping of ZnO-like alloys. Phys. Rev. Lett. 97, 146403 (2006). doi: 10.1103/PhysRevLett.97.146403
[24] Amato, M., Ossicini, S. & Rurali, R. Band-offset driven efficiency of the doping of SiGe core-shell nanowires. Nano Lett. 11, 594–598 (2011). doi: 10.1021/nl103621s
[25] Shu, H. B. et al. Band-offset effect on localization of carriers and p-type doping of InAs/GaAs core-shell nanowires. Phys. Lett. A 377, 1464–1468 (2013). doi: 10.1016/j.physleta.2013.04.028
[26] Kim, H. S. et al. Time-resolved photoluminescence studies of AlxGa1-xN alloys. Appl. Phys. Lett. 76, 1252–1254 (2000). doi: 10.1063/1.126000
[27] Rinke, P. et al. Consistent set of band parameters for the group-III nitrides AlN, GaN, and InN. Phys. Rev. B 77, 075202 (2008). doi: 10.1103/PhysRevB.77.075202
[28] Nakarmi, M. L. et al. Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping. Appl. Phys. Lett. 82, 3041–3043 (2003). doi: 10.1063/1.1559444
[29] Nam, K. B. et al. Mg acceptor level in AlN probed by deep ultraviolet photoluminescence. Appl. Phys. Lett. 83, 878–880 (2003). doi: 10.1063/1.1594833
[30] Wang, X. et al. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice. Sci. Rep. 7, 44223 (2017). doi: 10.1038/srep44223
[31] Luo, W. K. et al. Enhanced p-type conduction in AlGaN grown by metal-source flow-rate modulation epitaxy. Appl. Phys. Lett. 113, 072107 (2018). doi: 10.1063/1.5040334
[32] Li, J. et al. Optical and electrical properties of Mg-doped p-type AlxGa1-xN. Appl. Phys. Lett. 80, 1210–1212 (2002). doi: 10.1063/1.1450038
[33] Taniyasu, Y. et al. Mg doping for p-type AlInN lattice-matched to GaN. Appl. Phys. Lett. 101, 082113 (2012). doi: 10.1063/1.4747524
[34] Nakarmi, M. L. et al. Electrical and optical properties of Mg-doped Al0.7Ga0.3N alloys. Appl. Phys. Lett. 86, 092108 (2005).
[35] Brochen, S. et al. Dependence of the Mg-related acceptor ionization energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy. Appl. Phys. Lett. 103, 032102 (2013). doi: 10.1063/1.4813598
[36] Kipshidze, G. et al. Mg and O codoping in p-type GaN and AlxGa1-xN. Appl. Phys. Lett. 80, 2910–2912 (2002). doi: 10.1063/1.1471373
[37] Suzuki, M. et al. Doping characteristics and electrical properties of Mg-doped AlGaN grown by atmospheric-pressure MOCVD. J. Cryst. Growth 189190, 511–515 (1998). doi: 10.1016/S0022-0248(98)00341-8
[38] Chakraborty, A. et al. Electrical and structural characterization of Mg-doped p-type Al0.69Ga0.31N films on SiC substrate. J. Appl. Phys. 101, 053717 (2007). doi: 10.1063/1.2710303
[39] Zhong, H. X. et al. Reducing Mg acceptor activation-energy in Al0.83Ga0.17N disorder alloy substituted by nanoscale (AlN)5/(GaN)1 superlattice using MgGa δ-doping: Mg local-structure effect. Sci. Rep. 4, 6710 (2014). doi: 10.1038/srep06710
[40] Mireles, F. & Ulloa, S. E. Acceptor binding energies in GaN and AlN. Phys. Rev. B 58, 3879–3887 (1998). doi: 10.1103/PhysRevB.58.3879
[41] Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Mater. Sci. 6, 15–50 (1996). doi: 10.1016/0927-0256(96)00008-0
[42] Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). doi: 10.1103/PhysRevB.54.11169
[43] Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). doi: 10.1103/PhysRevB.50.17953
[44] Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). doi: 10.1103/PhysRevB.59.1758
[45] Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). doi: 10.1103/PhysRevLett.77.3865
[46] Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003). doi: 10.1063/1.1564060
[47] Madelung, O. Semiconductors-Basic Data (Springer, 1996).
[48] Van de Walle, C. G. & Neugebauer, J. First-principles calculations for defects and impurities: applications to Ⅲ-nitrides. J. Appl. Phys. 95, 3851–3879 (2004). doi: 10.1063/1.1682673