[1] Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. (Cambridge University Press, 1999).
[2] Lee, K. et al. Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications. Sensors 13, 4170-4191 (2013). doi: 10.3390/s130404170
[3] Yoon, J. et al. Label-free characterization of white blood cells by measuring 3D refractive index maps. Biomed. Opt. Express 6, 3865-3875 (2015). doi: 10.1364/BOE.6.003865
[4] Park, Y. et al. Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc. Natl Acad. Sci. USA 105, 13730-13735 (2008). doi: 10.1073/pnas.0806100105
[5] Kim, K. et al. Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes. Sci. Rep. 6, 36815 (2016). doi: 10.1038/srep36815
[6] Cooper, K. L. et al. Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions. Nature 495, 375-378 (2013). doi: 10.1038/nature11940
[7] Kim, K. et al. Optical diffraction tomography techniques for the study of cell pathophysiology. J. Biomed. Photonics Eng. 2, 020201 (2016). http://cn.bing.com/academic/profile?id=550a2a44775899cbde2c18735a013888&encoded=0&v=paper_preview&mkt=zh-cn
[8] Jin, D. et al. Tomographic phase microscopy: principles and applications in bioimaging[Invited]. J. Opt. Soc. Am. B 34, B64-B77 (2017). doi: 10.1364/JOSAB.34.000B64
[9] Park, Y., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nat. Photonics 12, 578-589 (2018). doi: 10.1038/s41566-018-0253-x
[10] Wolf, E. Three-dimensional structure determination of semi-transparent objects from holographic data. Opt. Commun. 1, 153-156 (1969). doi: 10.1016/0030-4018(69)90052-2
[11] Slaney, M., Kak, A. C. & Larsen, L. E. Limitations of imaging with first-order diffraction tomography. IEEE Trans. Microw. Theory Tech. 32, 860-874 (1984). doi: 10.1109/TMTT.1984.1132783
[12] Sung, Y. et al. Optical diffraction tomography for high resolution live cell imaging. Opt. Express 17, 266-277 (2009). doi: 10.1364/OE.17.000266
[13] Tian, L. & Waller, L. 3D intensity and phase imaging from light field measurements in an LED array microscope. Optica 2, 104-111 (2015). doi: 10.1364/OPTICA.2.000104
[14] Kamilov, U. S. et al. Learning approach to optical tomography. Optica 2, 517-522 (2015). doi: 10.1364/OPTICA.2.000517
[15] Kamilov, U. S. et al. A recursive Born approach to nonlinear inverse scattering. IEEE Signal Process. Lett. 23, 1052-1056 (2016). doi: 10.1109/LSP.2016.2579647
[16] Liu, H. Y. et al. SEAGLE: Sparsity-driven image reconstruction under multiple scattering. IEEE Trans. Comput. Imaging 4, 73-86 (2018). doi: 10.1109/TCI.2017.2764461
[17] Soubies, E., Pham, T. A. & Unser, M. Efficient inversion of multiple-scattering model for optical diffraction tomography. Opt. Express 25, 21786-21800 (2017). doi: 10.1364/OE.25.021786
[18] Lim, J. et al. Beyond Born-Rytov limit for super-resolution optical diffraction tomography. Opt. Express 25, 30445-30458 (2017). doi: 10.1364/OE.25.030445
[19] Pham, T. A. et al. Versatile reconstruction framework for diffraction tomography with intensity measurements and multiple scattering. Opt. Express 26, 2749-2763 (2018). doi: 10.1364/OE.26.002749
[20] Lim, J. et al. Learning tomography assessed using mie theory. Phys. Rev. Appl. 9, 034027 (2018). doi: 10.1103/PhysRevApplied.9.034027
[21] Kamilov, U. S. et al. Optical tomographic image reconstruction based on beam propagation and sparse regularization. IEEE Trans. Comput. Imaging 2, 59-70 (2016). doi: 10.1109/TCI.2016.2519261
[22] Bao, Y. J. & Gaylord, T. K. Clarification and unification of the obliquity factor in diffraction and scattering theories: discussion. J. Opt. Soc. Am. A 34, 1738-1745 (2017). doi: 10.1364/JOSAA.34.001738
[23] Sharma, A. & Agrawal, A. Non-paraxial split-step finite-difference method for beam propagation. Opt. Quantum Electron. 38, 19-34 (2006). doi: 10.1007/s11082-006-0019-4
[24] Sharma, A. & Agrawal, A. New method for nonparaxial beam propagation. J. Opt. Soc. Am. A 21, 1082-1087 (2004). doi: 10.1364/JOSAA.21.001082
[25] Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. der Phys. 330, 377-445 (1908). doi: 10.1002/andp.19083300302
[26] Yurkin, M. A. & Hoekstra, A. G. The discrete-dipole-approximation code ADDA: capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transf. 112, 2234-2247 (2011). doi: 10.1016/j.jqsrt.2011.01.031
[27] Yurkin, M. A. et al. Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers. Opt. Express 15, 17902-17911 (2007). doi: 10.1364/OE.15.017902
[28] Kaganovsky, Y. et al. Compressed sampling strategies for tomography. J. Opt. Soc. Am. A 31, 1369-1394 (2014). doi: 10.1364/JOSAA.31.001369
[29] Brady, D. J. et al. Compressive tomography. Adv. Opt. Photonics 7, 756-813 (2015). doi: 10.1364/AOP.7.000756
[30] Beck, A. & Teboulle, M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18, 2419-2434 (2009). doi: 10.1109/TIP.2009.2028250
[31] Beck, A. & Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183-202 (2009). doi: 10.1137/080716542
[32] Müller, P., Schürmann, M. & Guck, J. ODTbrain: a Python library for full-view, dense diffraction tomography. BMC Bioinforma. 16, 367 (2015). doi: 10.1186/s12859-015-0764-0
[33] Wang, Z. et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600-612 (2004). doi: 10.1109/TIP.2003.819861
[34] Schäfer, J., Lee, S. C. & Kienle, A. Calculation of the near fields for the scattering of electromagnetic waves by multiple infinite cylinders at perpendicular incidence. J. Quant. Spectrosc. Radiat. Transf. 113, 2113-2123 (2012). doi: 10.1016/j.jqsrt.2012.05.019
[35] D'Agostino, S. et al. Enhanced fluorescence by metal nanospheres on metal substrates. Opt. Lett. 34, 2381-2383 (2009). doi: 10.1364/OL.34.002381
[36] Yurkin, M. A. et al. Discrete dipole simulations of light scattering by blood cells. (Universiteit van Amsterdam, 2007).
[37] Kuchel, P. W. & Fackerell, E. D. Parametric-equation representation of biconcave erythrocytes. Bull. Math. Biol. 61, 209-220 (1999). doi: 10.1006/bulm.1998.0064
[38] Bhattacharya, D. & Sharma, A. Split step non-paraxial finite difference method for 3D scalar wave propagation. Opt. Quantum Electron. 39, 865-876 (2007). doi: 10.1007/s11082-007-9131-3