[1] |
Gabor, D. A new microscopic principle. Nature 161, 777-778 (1948). doi: 10.1038/161777a0 |
[2] |
Huang, D. et al. Optical coherence tomography. Science 254, 1178-1181 (1991). doi: 10.1126/science.1957169 |
[3] |
Cuche, E., Bevilacqua, F. & Depeursinge, C. Digital holography for quantitative phase-contrast imaging. Optics Letters 24, 291-293 (1999). doi: 10.1364/OL.24.000291 |
[4] |
Joo, C. et al. Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging. Optics Letters 30, 2131-2133 (2005). doi: 10.1364/OL.30.002131 |
[5] |
Nguyen, T. H. et al. Gradient light interference microscopy for 3D imaging of unlabeled specimens. Nature Communications 8, 210 (2017). doi: 10.1038/s41467-017-00190-7 |
[6] |
Rivenson, Y. et al. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light:Science & Applications 7, 17141 (2018). |
[7] |
Kumar, V. , Abbas, A. & Aster, J. C. Robbins & Cotran Pathologic Basis of Disease. (Amsterdam: Elsevier, 2014). |
[8] |
Lichtman, J. W. & Conchello, J. A. Fluorescence microscopy. Nature Methods 2, 910-919 (2005). doi: 10.1038/nmeth817 |
[9] |
Lang, W. Nomarski Differential Interference-Contrast Microscopy. (Oberkochen: Carl Zeiss, 1982). |
[10] |
Arnison, M. R. et al. Linear phase imaging using differential interference contrast microscopy. Journal of Microscopy 214, 7-12 (2004). doi: 10.1111/j.0022-2720.2004.01293.x |
[11] |
Park, Y., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nature Photonics 12, 578-589 (2018). doi: 10.1038/s41566-018-0253-x |
[12] |
Popescu, G. et al. Fourier phase microscopy for investigation of biological structures and dynamics. Optics Letters 29, 2503-2505 (2004). doi: 10.1364/OL.29.002503 |
[13] |
Marquet, P. et al. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Optics Letters 30, 468-470 (2005). doi: 10.1364/OL.30.000468 |
[14] |
Wu, Y. C. & Ozcan, A. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring. Methods 136, 4-16 (2018). doi: 10.1016/j.ymeth.2017.08.013 |
[15] |
Popescu, G. et al. Diffraction phase microscopy for quantifying cell structure and dynamics. Optics Letters 31, 775-777 (2006). doi: 10.1364/OL.31.000775 |
[16] |
Wang, Z. et al. Spatial light interference microscopy (SLIM). Optics Express 19, 1016-1026 (2011). doi: 10.1364/OE.19.001016 |
[17] |
Ji, N., Milkie, D. E. & Betzig, E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nature Methods 7, 141-147 (2010). doi: 10.1038/nmeth.1411 |
[18] |
Jang, M. et al. Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: a study on in vivo mouse skin. Biomedical Optics Express 6, 72-85 (2015). doi: 10.1364/BOE.6.000072 |
[19] |
Kollarova, V. et al. Quantitative phase imaging through scattering media by means of coherence-controlled holographic microscope. Journal of Biomedical Optics 20, 111206 (2015). doi: 10.1117/1.JBO.20.11.111206 |
[20] |
Qiao, H. et al. GPU-based deep convolutional neural network for tomographic phase microscopy with ℓ1 fitting and regularization. Journal of Biomedical Optics 23, 066003 (2018). |
[21] |
Barbastathis, G., Ozcan, A. & Situ, G. H. On the use of deep learning for computational imaging. Optica 6, 921-943 (2019). doi: 10.1364/OPTICA.6.000921 |
[22] |
Jiang, S. W. et al. Solving Fourier ptychographic imaging problems via neural network modeling and TensorFlow. Biomedical Optics Express 9, 3306-3319 (2018). doi: 10.1364/BOE.9.003306 |
[23] |
Nguyen, T. et al. Convolutional neural network for Fourier ptychography video reconstruction: learning temporal dynamics from spatial ensembles. (2018). at https://www.semanticscholar.org/paper/Convolutional-neural-network-for-Fourier-video-from-Nguyen-Xue/5295853f8db15f04fce75920a7f7f9d68033d569 URL. |
[24] |
Shen, D. G., Wu, G. R. & Suk, H. I. Deep learning in medical image analysis. Annual Review of Biomedical Engineering 19, 221-248 (2017). doi: 10.1146/annurev-bioeng-071516-044442 |
[25] |
Wu, Y. C. et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery. Optica 5, 704-710 (2018). doi: 10.1364/OPTICA.5.000704 |
[26] |
Wu, Y. C. et al. Bright-field holography: cross-modality deep learning enables snapshot 3D imaging with bright-field contrast using a single hologram. Light:Science & Applications 8, 25 (2019). |
[27] |
Ren, Z. B., Xu, Z. M. & Lam, E. Y. M. End-to-end deep learning framework for digital holographic reconstruction. Advanced Photonics 1, 016004 (2019). |
[28] |
Kamilov, U. S. et al. Learning approach to optical tomography. Optica 2, 517-522 (2015). doi: 10.1364/OPTICA.2.000517 |
[29] |
Goy, A. et al. High-resolution limited-angle phase tomography of dense layered objects using deep neural networks. Proceedings of the National Academy of Sciences of the United States of America 116, 19848-19856 (2019). doi: 10.1073/pnas.1821378116 |
[30] |
Bianco, V. et al. Real-time FPM reconstruction and misalignment correction by numerical Multi-Look and GAN. Computational Optical Sensing and Imaging 2022. Vancouver, British Columbia, Canada: Optica Publishing Group, 2022, CTh3C. 4. |
[31] |
Xue, Y. J. et al. Reliable deep-learning-based phase imaging with uncertainty quantification. Optica 6, 618-629 (2019). doi: 10.1364/OPTICA.6.000618 |
[32] |
Mengu, D. & Ozcan, A. All-optical phase recovery: diffractive computing for quantitative phase imaging. Advanced Optical Materials 10, 2200281 (2022). doi: 10.1002/adom.202200281 |
[33] |
Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004-1008 (2018). doi: 10.1126/science.aat8084 |
[34] |
Mengu, D. et al. Analysis of diffractive optical neural networks and their integration with electronic neural networks. IEEE Journal of Selected Topics in Quantum Electronics 26, 3700114 (2020). |
[35] |
Luo, Y. et al. Design of task-specific optical systems using broadband diffractive neural networks. Light:Science & Applications 8, 112 (2019). |
[36] |
Li, J. X. et al. Spectrally encoded single-pixel machine vision using diffractive networks. Science Advances 7, eabd7690 (2021). doi: 10.1126/sciadv.abd7690 |
[37] |
Veli, M. et al. Terahertz pulse shaping using diffractive surfaces. Nature Communications 12, 37 (2021). doi: 10.1038/s41467-020-20268-z |
[38] |
Işil, C. et al. Super-resolution image display using diffractive decoders. Science Advances 8, eadd3433 (2022). doi: 10.1126/sciadv.add3433 |
[39] |
Kulce, O. et al. All-optical synthesis of an arbitrary linear transformation using diffractive surfaces. Light:Science & Applications 10, 196 (2021). |
[40] |
Kulce, O. et al. All-optical information-processing capacity of diffractive surfaces. Light:Science & Applications 10, 25 (2021). |
[41] |
Sakib Rahman, M. S. & Ozcan, A. Computer-free, all-optical reconstruction of holograms using diffractive networks. ACS Photonics 8, 3375-3384 (2021). doi: 10.1021/acsphotonics.1c01365 |
[42] |
Li, Y. H. et al. Analysis of diffractive neural networks for seeing through random diffusers. IEEE Journal of Selected Topics in Quantum Electronics 29, 7600117 (2023). |
[43] |
Lin, X. et al. All-optical machine learning using diffractive deep neural networks, supplementary materials. Science 361, 1004-1008 (2018). doi: 10.1126/science.aat8084 |
[44] |
Rahman, M. S. S. et al. Universal linear intensity transformations using spatially-incoherent diffractive processors. Print at https://arxiv.org/abs/2303.13037 (2023). |
[45] |
Mengu, D. et al. Misalignment resilient diffractive optical networks. Nanophotonics 9, 4207-4219 (2020). doi: 10.1515/nanoph-2020-0291 |
[46] |
Bai, B. J. et al. Data class-specific all-optical transformations and encryption. Advanced Materials (in the press). |
[47] |
Semple, N. & Iyer, A. K. Electron-beam lithography fabrication process development for a Mid-IR plasmonic metasurface with fine features. 2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials). New York, NY, USA: IEEE, 2020, 511-513. |
[48] |
Oran, D. et al. 3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffolds. Science 362, 1281-1285 (2018). |
[49] |
Li, S. et al. Imaging through glass diffusers using densely connected convolutional networks. Optica 5, 803 (2018). doi: 10.1364/OPTICA.5.000803 |
[50] |
Wu, T. F. et al. Imaging through a thin scattering layer and jointly retrieving the point-spread-function using phase-diversity. Optics Express 25, 27182-27194 (2017). doi: 10.1364/OE.25.027182 |
[51] |
Xu, X. Q. et al. Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference. Optics Express 26, 15073-15083 (2018). doi: 10.1364/OE.26.015073 |
[52] |
Satat, G. et al. All photons imaging through volumetric scattering. Scientific Reports 6, 33946 (2016). doi: 10.1038/srep33946 |
[53] |
Katz, O. et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nature Photonics 8, 784-790 (2014). doi: 10.1038/nphoton.2014.189 |
[54] |
Mengu, D. et al. Classification and reconstruction of spatially overlapping phase images using diffractive optical networks. Scientific Reports 12, 8446 (2022). doi: 10.1038/s41598-022-12020-y |
[55] |
Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Proceedings of the 3rd International Conference on Learning Representations. San Diego, CA, USA, 2015. |